
Chapter 3 –
PROBABILITY 
DISTRIBUTIONS



Distributions

● A distribution describes all of the probable 

outcomes of a variable.

● In a discrete distribution, the sum of all the 

individual probabilities must equal 1

● In a continuous distribution, the area under  

the probability curve equals 1



Random Variables 

A random variable is a numerical outcome of a 
random experiment.
Types:
Discrete Random Variable: Takes specific values 
(e.g., dice roll: 1, 2, 3...).
Continuous Random Variable: Takes any value 
in a range (e.g., height: 5.5 ft).
Example: Tossing a coin → Heads = 1, Tails = 0.



Discrete Random Variables:

Random variables that take a countable number 

of distinct values.

Values are specific and separate (e.g., integers).

Represented using a Probability Mass Function 

(PMF).

Examples:

Number of heads in 3 coin tosses (0, 1, 2, 3).

Number of customers in a store (0, 1, 2...).



Discrete Random Variables:

Random variables that take a countable number 

of distinct values.

Values are specific and separate (e.g., integers).

Represented using a Probability Mass Function 

(PMF).

Examples:

Number of heads in 3 coin tosses (0, 1, 2, 3).
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Continuous Random Variables:

Random variables that can take an infinite number 

of values within a range.

Values are not countable but can take any value in 

a continuous interval.

Represented using a Probability Density Function 

(PDF).

Examples:

Height of people (e.g., 5.5, 5.75 feet).

Time taken to complete a task (e.g., 2.35 seconds).



Discrete Probability  

Distributions



Discrete Distributions

● Discrete probability distributions are also 

called probability mass functions:

Uniform Distribution

Binomial Distribution 

Poisson Distribution



Uniform Distribution



Uniform Distribution

● Rolling a fair die has 6 discrete,  

equally probable outcomes

● You can roll a 1or a 2, but not a 1.5

● The probabilities of each outcome are  

evenly distributed across the sample space



Uniform Distribution

● Rolling a fair die:

heights are  
all the same,  
add up to 1



Binomial Distribution



Binomial Distribution

● “Binomial” means there are two discrete,

mutually exclusive outcomes of a trial.  

heads or tails

on or off

sick or healthy

success or failure



Bernoulli Trial

● A Bernoulli Trial is a random experiment in  

which there are only two possible outcomes

- success or failure

● A series of trials n will follow a binary  

distribution so long as

a)the probability of success p is constant

b) trials are independent of one another



Binomial Probability Mass Function

𝑃 𝑥:𝑛,𝑝 =

● Gives the probability of observing

x successes in n trials

● The probability of success on a single trial 

is denoted by p

● Assumes that p is fixed for all trials

𝑛
𝑥

(𝑝)𝑥(1 − 𝑝)(𝑛−𝑥)



Binomial Distribution



Binomial Distribution



Binomial Distribution Exercise

● If you roll a die 16 times, what is the

probability that a five comes up 3 times?

● Based on the chart,

it should be just shy

of 0.25

● 𝑥 = 3, 𝑛 = 16, 𝑝 = 1/6



Binomial Distribution Exercise

𝑛
𝑥

𝑃 𝑥: 𝑛, 𝑝 = (𝑝)𝑥(1 − 𝑝)(𝑛−𝑥)

=
𝑛!

𝑥! 𝑛 − 𝑥 !
(𝑝)𝑥(1 − 𝑝)(𝑛−𝑥)

=
16!

3! 13 !
(1/6)3(5/6)(13)

=
16 ∙ 15 ∙ 14

3 ∙ 2

13 513

63 613
= 0.242



Poisson Distribution



Poisson Distribution

● A binomial distribution considers the 

number of successes out of n trials

● A Poisson Distribution considers the 

number of successes per unit of

time*  over the course of many units

*or any other continuous unit, e.g. distance



Poisson Distribution

● Calculation of the Poisson probability mass 

function starts with a mean expected value

𝐸 𝑋 = 𝜇

● This is then assigned to “lambda”

# 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
𝜆 = = 𝜇



Poisson Distribution

𝑃 𝑥 =

● The equation becomes

𝜆𝑥𝑒−𝜆

𝑥!

where 𝑒 = 𝐸𝑢𝑙𝑒𝑟′𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 = 2.71828 …



Poisson Distribution



Poisson Distribution Exercise #1

● A warehouse typically receives 8 deliveries 

between 4 and 5pm on Friday.

● What is the probability  

that only 4 deliveries  

will arrive between

4 and 5pm this Friday?



Poisson Distribution Exercise #1

𝑥 = 4 𝜆 = 8

𝑃 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
=

84 ∙ 2.71828−8

4!

=
4096 ∙

1
2980.96

24
= 𝟎.𝟎𝟓𝟕𝟐



Poisson Distribution Exercise #1

This agrees  
with our chart!

=
4096 ∙

1
2980.96

24
= 𝟎.𝟎𝟓𝟕𝟐



Poisson Distribution

● The cumulative mass function is simply the 

sum of all the discrete probabilities

● The probability of seeing fewer than 4  

events in a Poisson Distribution is:

𝑃 𝑋: 𝑥<4 =

=
𝜆0𝑒−𝜆

0!
+
𝜆1𝑒−𝜆

1!
+
𝜆2𝑒−𝜆

2!
+
𝜆3𝑒−𝜆

3!



𝑖=0

3
𝜆𝑖𝑒−𝜆

𝑖!



Poisson Distribution

● Remember that the sum of all possibilities 

equals 1

● The probability of seeing at least 1event is  
one minus the probability of seeing none:

𝑃 𝑋: 𝑥≥1 = 1 − 𝑃 𝑋: 𝑥=0

0!

0 −𝜆

= 1 − 𝜆 𝑒 = 1 − 𝑒−𝜆



Poisson Distribution Exercise #2

● A warehouse typically receives 8 deliveries 

between 4 and 5pm on Friday.

● What is the probability  

that fewer than 3

will arrive between

4 and 5pm this Friday?



Poisson Distribution Exercise #2

𝑃 𝑋: 𝑥<3 = =
𝑖! 0!

𝜆𝑖𝑒−𝜆 𝜆0𝑒−𝜆 𝜆1𝑒−𝜆

+ +
1! 2!

𝜆2𝑒−𝜆

=
80 ∙ 2.71828−8

+
81 ∙ 2.71828−8

+
82 ∙ 2.71828−8

=
1 ∙

0!
1

2980.96

1
+

8 ∙

1!
1

2980.96

1

= 𝟎.𝟎𝟏𝟑𝟕

+
64 ∙

2!
1

2980.96

2



𝑖 =0

2

.



Poisson Distribution –Partial Intervals

● The Poisson Distribution assumes that the 

probability of success during a small time  

interval is proportional to the entire length  

of the interval.

● If you know the expected value 𝜆 over an  

hour, then the expected value over one

minute of that hour is
𝜆𝑚𝑖𝑛𝑢𝑡𝑒

𝜆ℎ𝑜𝑢𝑟
=

60



Poisson Distribution Exercise #3

● A warehouse typically receives 8 deliveries 

between 4 and 5pm on Friday.

● What is the probability  

that no deliveries arrive  

between 4:00 and 4:05  

this Friday?



Poisson Distribution Exercise #3

𝑥 = 0 𝜆1 ℎ𝑜𝑢𝑟 = 8

𝜆5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

𝜆1 ℎ𝑜𝑢𝑟 8
= = = 0.6667 

60/5 12

𝑃 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
=

0.670 ∙ 2.71828−0.6667

0!

= 𝟎.𝟓𝟏𝟑𝟒



Continuous Probability 

Distributions



Continuous Distributions

● Continuous probability distributions are 

also called probability density functions:

Normal Distribution

Exponential Distribution  

Beta Distribution



Normal Distribution

● Many real life data points follow a normal 

distribution:

● People's Heights and Weights

● Population Blood Pressure

● Test Scores

● Measurement Errors



Normal Distribution

● These data sources tend to be around a 

central value with no bias left or right, and  

it gets close to a "Normal Distribution" like  

this:

Normal Distribution



Normal Distribution

● We use a continuous distribution to model  

the behavior of these data sources.

● Notice the continuous line and area in this  

PDF.

Normal Distribution



Normal Distribution

● Unlike discrete distributions, where 

the sum of all the bars equals one,  

in a normal distribution the

area under the curve equals one
Binomial Distribution Normal Distribution



Normal Distribution

asymmetrical curves
display skew and are

not normal

● also called the  

Bell Curve or

Gaussian Distribution

● always symmetrical



Normal Distribution

● the probability of a 

specific outcome  

is zero

● we can only find 

probabilities over a  

specified interval or  

range of outcomes



Normal Distribution

lower  
tail

upper  
tail

mean(μ), median & mode



Standard Normal Distribution

Z distribution:
μ =0
σ =1

-3σ -2σ -σ σ 2σ 3σ



Standard Normal Distribution

-3σ -2σ -σ σ 2σ 3σ

Z distribution:
μ =0
σ =1

-σ σ

68.27%
of values



Standard Normal Distribution

-σ σ-2σ 2σ

68.27%
of values
95.45%

of values

Z distribution:
μ =0
σ =1



Standard Normal Distribution

-2σ 2σ-3σ 3σ

95.45%
of values
99.73%

of values

Z distribution:
μ =0
σ =1



Normal Distribution

● All normal curves exhibit the same behavior:

● symmetry about the mean

● 99.73% of values fall within  

three standard deviations

● However, the mean does not have to be 

zero, and σ does not have to equal one.



Normal Distribution Formula

Other populations can be normal as well:

μ=0  
σ=1

μ=1 
σ=0.5



Normal Distribution

● If we determine that a population  

approximates a normal distribution,  

then we can make some powerful 

inferences about it once we know  

its mean and standard deviation



Normal Distribution 

Formulas and Z Scores



Normal Distribution

● In the Statistics section of the course, we  

will be using sampling, standard error, and  

hypothesis testing to evaluate experiments.

● A large part of this process is 

understanding how to "standardize" a 

normal distribution.



Normal Distribution

● We can take any normal distribution and 

standardize it to a standard normal  

distribution.



Normal Distribution

● We'll be able to take any value from a

normal distribution and standardize it

through a Z score.



Normal Distribution

● Using this Z Score, we can then calculate a 

particular x value's percentile.



Normal Distribution

● Recall that a percentile is a way of saying  

"What percentage falls below this value".

● Meaning a 95 percentile value indicates  

that 95 percent of all other data points fall  

below this value.



Normal Distribution

● For example if a student scores a 1700 on 

their SATs and this score is in the 90  

percentile, than we know 90% of all other 

students scored less than 1700.



Normal Distribution

● If we can model our data as a normal  

distribution, we can convert the values in  

the normal distribution to a

standard normal distribution to calculate a 

percentile.



Normal Distribution

● For example, we can have a normal  

distribution of test point scores with some 

mean and standard deviation.

● We can then use a Z score to figure out the  

percentile of any particular test score.



Normal Distribution Formula

Where:

μ = mean

σ = standard deviation

e = 2.71828

π = 3.14159



Normal Distribution Formula

This produced our plot

with a mean of 0 and a

standard deviation of 1:



Z-Scores and Z-Table

● To gain insight about a specific value 𝑥 in 

other normal populations, we standardize

𝑥 by calculating a z-score:

𝑧 =
𝑥 − 𝜇

𝜎
● We can then determine 𝑥’s percentile by 

looking at a z-table



How to Look Up Z-Scores

● A z-table of Standard Normal Probabilities 

maps a particular z-score to the area under 

a normal distribution curve to the left of the 

score.

● Since the total area under the curve is 1,  

probabilities are bounded by 0 and 1



How to Look Up Z-Scores

● Different tables serve different purposes:

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

table

entry

𝒛

table  

entry

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
𝒛



Z-Score Exercise

● A company is looking to hire a new  

database administrator.

● They give a standardized test to applicants  

to measure their technical knowledge.

● Their first applicant, Amy, scores an 87

● Based on her score, is Amy exceptionally 

qualified?



Z-Score Exercise

● To decide how well an applicant scored, 

we need to understand the population.

● Based on thousands of previous tests, 

we know that the mean score is 75 out of

100, with a standard deviation of 7 points.



Z-Score Exercise Solution

𝑧 =

● First, convert Amy’s score to a standardized

z-score using the formula

𝑥 − 𝜇

𝜎

=
87 − 75

7
= 𝟏.𝟕𝟏𝟒𝟑



Z-Score Exercise Solution

● Next, look up 1.7143 on a z-table:

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817



Z-Score Exercise Solution

● 0.9564 represents 

the area to the  

left of Amy’s score

● This means that  

Amy outscored

95.64%of others who took the same test.

0.9564



Student’s T-Distribution



Student’s T-Distribution

● Developed by William Sealy Gossett while  

he was working at Guinness Brewery

● Published under the pseudonym “Student” 

as Guinness wouldn’t let him use his name.

● Goal was to select the best barley from 

small samples, when the population  

standard deviation was unknown!



Student’s t-Distribution

● t-Distributions have fatter tails than 

normal Z-Distributions

Z-Distribution  

t-Distribution



Student’s t-Distribution Formula

where;

𝑣 is the degree of freedom (sample size – 1)

𝜋 is 3.14285

Γ: Gamma function (generalization of factorial).



Student’s t-Distribution Characteristics

Symmetrical: Similar to the normal distribution but with
heavier tails.

Degrees of Freedom (𝒗):
• The shape of the distribution depends on 𝒗.
• As 𝒗 →∞, it approaches the standard normal distribution.

Applications:
Used for hypothesis testing when the population standard
deviation is unknown, particularly in small samples.



Student’s t-Distribution

● They approach a normal distribution 

as the degrees of freedom increase.

Z-Distribution  

t-Distribution



Probability Distribution 

implementation in R



d Function: Probability Density or Mass Function

Returns the likelihood of a value occurring.

Usage: dnorm(x, mean, sd)

for Normal Distribution.



p Function: Cumulative Probability Function

Returns the probability of a value being less than 

or equal to a given number.

Example: pnorm(x, mean, sd)



q Function: Quantile Function

Returns the value corresponding to a specific 

cumulative probability.

Example: qnorm(prob, mean, sd).



r Function: Random Sampling

Generates random numbers from a specified 

distribution.

Example: rnorm(n, mean, sd).



Binomial Distribution

Usage in R:

• dbinom(x, size = 1, prob) → PMF.
• pbinom(x, size = 1, prob) → CDF.
• qbinom(prob, size = 1, prob) → Quantiles.
• rbinom(n, size = 1, prob) → Random samples.



Poisson Distribution

Usage in R:

• dpois(x,lambda) → PMF.
• ppois(x,lambda) → CDF.
• qpois(prob, lambda) → Quantiles.
• rpois(n, lambda) → Random samples.



Normal Distribution

Usage in R:

• dnorm(x,mean,sd) → PMF.
• pnorm(x,mean,sd) → CDF.
• qnorm(prob,mean,sd) → Quantiles.
• rnorm(n,mean,sd) → Random samples.



t-Distribution

Usage in R:

• dt(x,df) → PMF.
• pt(x,df) → CDF.
• qt(prob,df) → Quantiles.
• rt(n,df) → Random samples.


