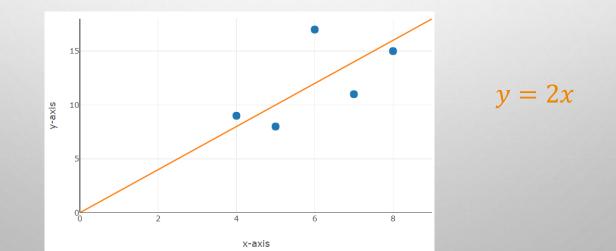
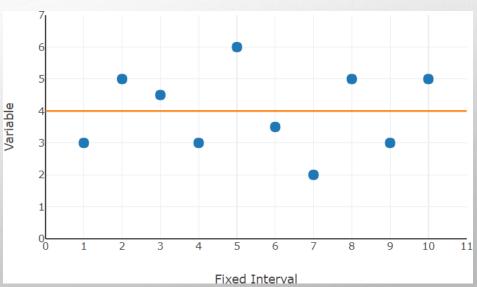
CHAPTER 5 - LINEAR REGRESSION AND PLOTTINGS

 LINEAR REGRESSION
 The goal of regression is to develop an equation or formula that best describes the relationship between variables.



LINEAR REGRESSION

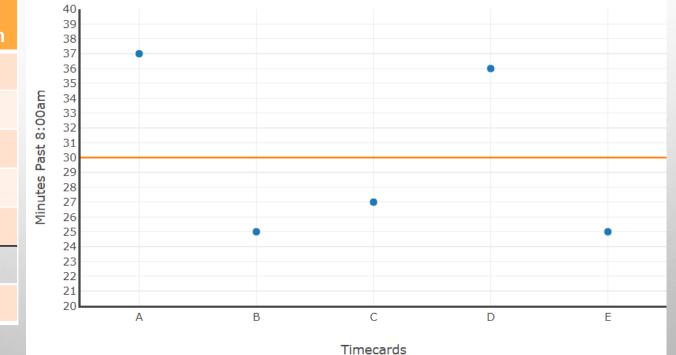
- How do we find a best-fit line?
- Consider a dataset with only one variable
- The best-fit line is just the mean value of the data points



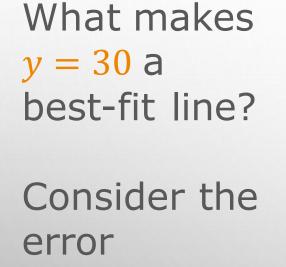
UNDERSTANDING BEST FIT A plant manager wants to know when employees arrive at work

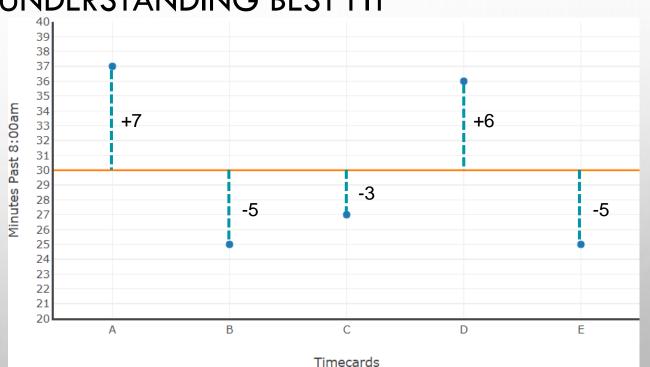
The shift starts a 8:30am
She takes five random timecards and plots the minutes of arrival on a chart

UNDERSTANDING BEST FIT

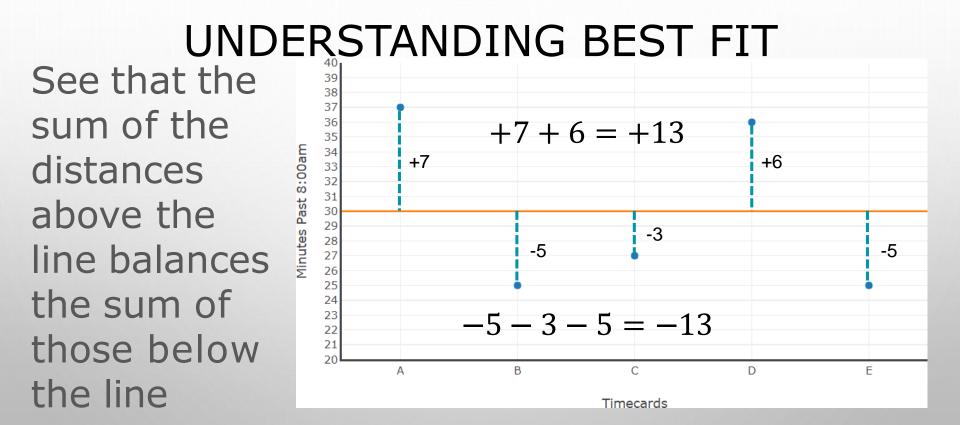


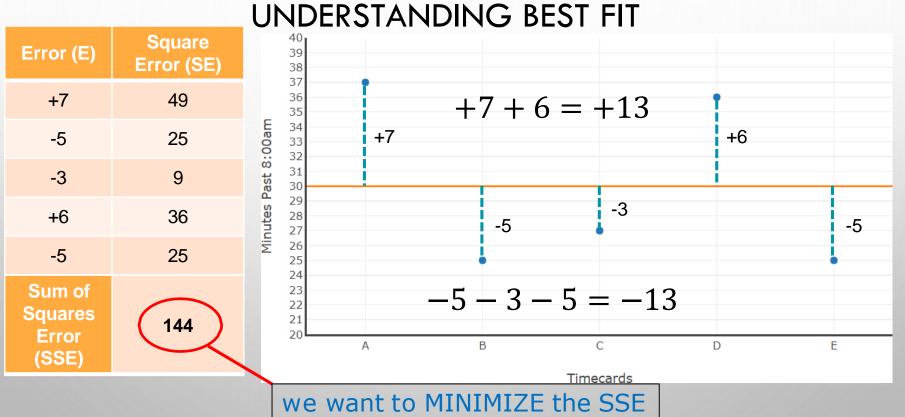
Minutes Timecard past 8:00am Α 37 В 25 С 27 D 36 Е 25 Total: 150 Mean 30

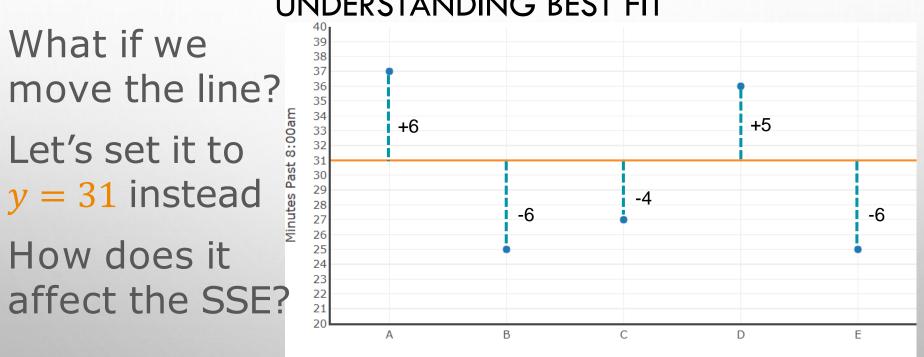




UNDERSTANDING BEST FIT

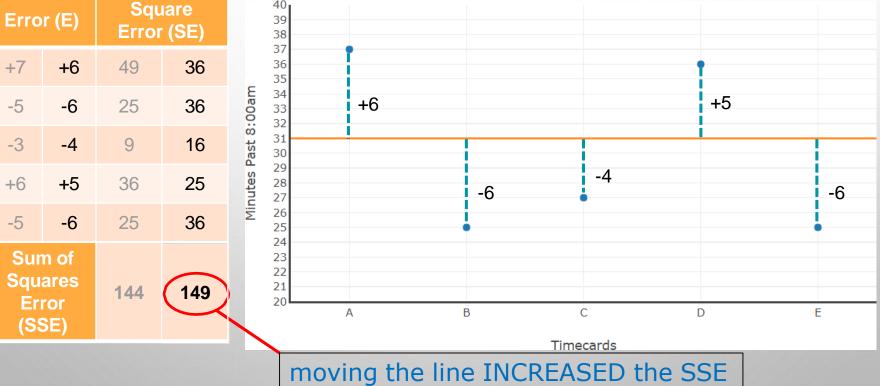




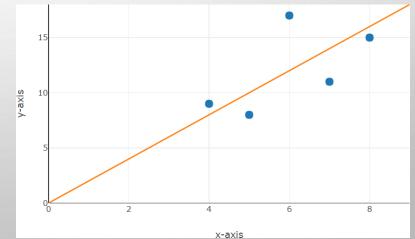


UNDERSTANDING BEST FIT

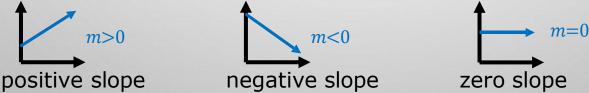
Timecards



- LINEAR REGRESSION
 That's it! The goal of regression is to find the line that best describes our data.
- Fortunately, we don't have to rely on trial-and-error.
- We have algebra!



LINEAR REGRESSION Recall that the equation of a line follows the form y = mx + b where *m* is the slope of the line, and **b** is where the line crosses the y-axis when x=0 (*b* is the y-intercept)



• In a linear regression, where we try to formulate the relationship between variables, y = mx + b becomes

 $\hat{y} = b_0 + b_1 x$

 Our goal is to predict the value of a dependent variable (y) based on that of an independent variable (x).

$$\hat{y} = b_0 + b_1 x$$

LINEAR REGRESSION

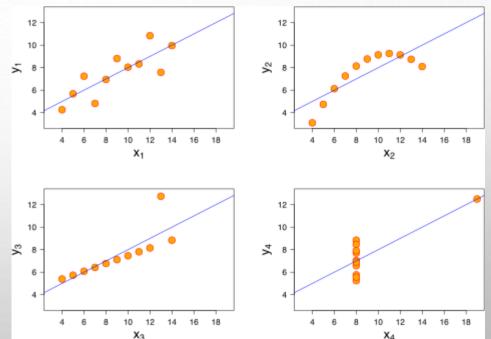
• How to derive b_1 and b_0 :

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
$$b_0 = \bar{y} - b_1 \bar{x}$$

LIMITATIONS OF LINEAR REGRESSION

Anscombe's Quartet illustrates the pitfalls of relying on pure calculation. Each graph results in the same calculated

regression line.



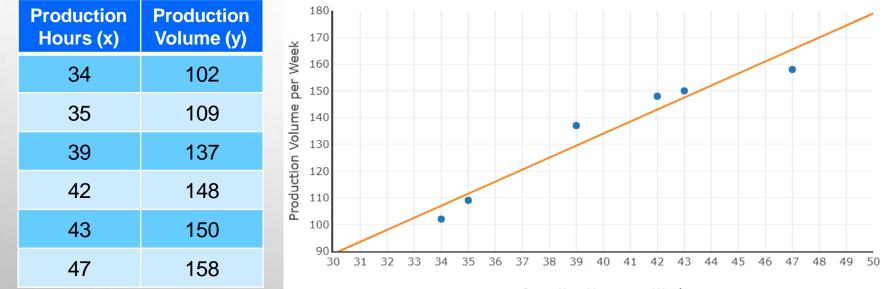
 A manager wants to find the relationship between the number of hours that a plant is operational in a week and weekly production.

 Here the independent variable x is hours of operation, and the dependent variable y is production volume.

• The manager develops the following table:

Production Hours (x)	Production Volume (y)		
34	102		
35	109		
39	137		
42	148		
43	150		
47	158		

• First, plot the data Is there a linear pattern?



Operating Hours per Week

• Run calculations:

 $\begin{aligned} \hat{y} &= b_0 + b_1 x\\ b_1 &= \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \end{aligned}$ $b_0 = \bar{y} - b_1 \bar{x}$

	Production	Production						
	Hours (x)	Volume (y)	$(x-\overline{x})$	(y − y)	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$		
	34	102	-6	-32	192	36		
	35	109	-5	-25	125	25		
	39	137	-1	3	-3	1		
	42	148	2	14	28	4		
	43	150	3	16	48	9		
	47	158	7	24	168	49		
$\overline{x}, \overline{y}$	40	134		Sum:	558	124		
					$\Sigma(x-\overline{x})(y-\overline{y})$	$\Sigma(x-\bar{x})^2$		

Run calculations:

	Production Hours (x)	Production Volume (y)
	34	102
	35	109
	39	137
	42	148
	43	150
	47	158
. , y	40	134

$$p_1 \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{558}{124} = 4.5$$

$$\hat{y} = b_0 + b_1 x b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} b_0 = \bar{y} - b_1 \bar{x}$$

 $b_0 = y - b_1 x = 134 - (4.5 \times 40) = -46$

Sum:	558	124
	$\Sigma(x-\overline{x})(y-\overline{y})$	$\Sigma(x-\bar{x})^2$

Based on the formula, if the manager wants to

Production Hours (x)	Production Volume (y)
34	102
35	109
39	137
42	148
43	150
47	158

produce 125 units per week, the plant should run for:

$$\hat{y} = b_0 + b_1 x$$

$$125 = -46 + 4.5x$$

 $x = \frac{171}{4.5} = 38 \text{ hours per week}$

MULTIPLE REGRESSION

 In linear regression we have one independent variable that may relate to a dependent variable with the formula

$$\hat{y} = b_0 + b_1 x$$

- Multiple regression lets us compare several independent variables to one dependent variable at the same time.
- Each independent variable is assigned a subscript: x₁, x₂, x₃ etc.

The general formula is expanded:

linear regressionmultiple regression $\hat{y} = b_0 + b_1 x$ $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \cdots$

- b_1 is the coefficient on x_1
- b_1 reflects the change in \hat{y} for a given change in x_1 , all else remaining constant

The formulas for coefficients also expand:

multiple regression

$$b_{1} = \frac{\sum(x_{2} - \overline{x_{2}})^{2} \sum(x_{1} - \overline{x_{1}})(y - \overline{y}) - \sum(x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum(x_{2} - \overline{x_{2}})(y - \overline{y})}{\sum(x_{1} - \overline{x_{1}})^{2} \sum(x_{2} - \overline{x_{2}})^{2} - (\sum(x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_{2} = \frac{\sum(x_{1} - \overline{x_{1}})^{2} \sum(x_{2} - \overline{x_{2}})(y - \overline{y}) - \sum(x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum(x_{1} - \overline{x_{1}})(y - \overline{y})}{\sum(x_{1} - \overline{x_{1}})^{2} \sum(x_{2} - \overline{x_{2}})^{2} - (\sum(x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_{0} = \overline{y} - b_{1}\overline{x_{1}} - b_{2}\overline{x_{2}}$$

MULTIPLE REGRESSION For example, a used car lot may want to know what variables affect net profits They would create a list of predictors that might correlate with profit: \$695°° age brand price color style

MULTIPLE REGRESSION They would want to measure the correlation of each variable to net profit

 However, some predictors might correlate with each other:

 age brand price color style

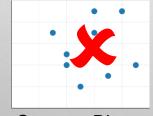
- MULTIPLE REGRESSION
 The age of a car would have a direct impact on its sales price
- You can't adjust one without affecting the other
- This is called multicollinearity age brand price color style

- A pharmacy delivers medications to the surrounding community.
- Drivers can make several stops per delivery.
 The owner would like to predict the length of time a delivery will take based on one or two related variables.

- First, consider what variables may have an effect on delivery time:
 - number of stops
 - driving distance
 - outside temperature
 - gasoline prices

 Next, plot each variable against delivery time to see if there may be a relationship

- Once we've chosen our variables x₁ and x₂, we'll usually test for multicollinearity
- We want to know if our two independent variables are closely related to each other
- If they are, it makes sense to discard one!

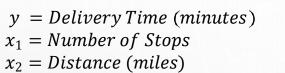


A delivery might go to one customer that lives far away, or to a group of stops close by

Stops vs Distance

y = Delivery Time (minutes) $x_1 = Number of Stops$ $x_2 = Distance (miles)$

у	<i>x</i> ₁	<i>x</i> ₂	(y- <u></u> y)	$(x_1 - \overline{x_1})$	$(x_1 - \overline{x_1})^2$	$(x_2 - \overline{x_2})$	$(x_2-\overline{x_2})^2$	$(x_1 - \overline{x_1})(y - \overline{y})$	$(x_2-\overline{x_2})(y-\overline{y})$	$(x_1-\overline{x_1})(x_2-\overline{x_2})$
29	1	8	-1	-1	1	2	4	1	-2	-2
31	3	4	1	1	1	-2	4	1	-2	-2
36	2	9	6	0	0	3	9	0	18	0
35	3	6	5	1	1	0	0	5	0	0
19	1	3	-11	-1	1	-3	9	11	33	3
\overline{y}	$\overline{x_1}$	$\overline{x_2}$		Σ	$(x_1 - \overline{x_1})^2$	Σ	$(x_2-\overline{x_2})^2$	$\Sigma(x_1 - \overline{x_1})(y - \overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	$\Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$
30	2	6			4		26	18	47	-1



$$b_{1} = \frac{\sum (x_{2} - \overline{x_{2}})^{2} \sum (x_{1} - \overline{x_{1}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{2} - \overline{x_{2}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_{2} = \frac{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{1} - \overline{x_{1}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

<u>y</u>	$\overline{x_1}$	$\overline{x_2}$	$\Sigma(x_1-\overline{x_1})^2$	$\Sigma(x_2-\overline{x_2})^2$	$\Sigma(x_1 - \overline{x_1})(y - \overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	$\Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$
30	2	6	4	26	18	47	-1

y = Delivery Time **RECRESSION EXERCISE #2** $x_1 = Number of Stops$ $x_2 = Distance (miles)$

$$b_1 = \frac{(26)(18) - (-1)(47)}{(4)(26) - ((-1))^2} = \frac{515}{103} = 5$$

$$b_2 = \frac{(4) (47) - (-1)(18)}{(4)(26) - ((-1))^2} = \frac{206}{103} = 2$$

y	$\overline{x_1}$	$\overline{x_2}$	$\Sigma(x_1-\overline{x_1})^2$	$\Sigma(x_2-\overline{x_2})^2$	$\Sigma(x_1 - \overline{x_1})(y - \overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	$\Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$
30	2	6	4	26	18	47	-1

REGRESSION EXERCISE #2

y = Delivery Time (minutes) $x_1 = Number of Stops$ $x_2 = Distance (miles)$

$$b_1 = \frac{(26)(18) - (-1)(47)}{(4)(26) - ((-1))^2} = \frac{515}{103} = 5$$

$$b_2 = \frac{(4) (47) - (-1)(18)}{(4)(26) - ((-1))^2} = \frac{206}{103} = 2$$

$$\hat{y} = 8 + 5x_1 + 2x_2$$

$$b_0 = \mathbf{M} - b_1 \overline{x_1} - b_2 \overline{x_2}$$

$$= 30 - (5)(2) - (2)(6)$$

$$= 30 - 10 - 12 = 8$$

$$\overline{y}$$
 $\overline{x_1}$
 $\overline{x_2}$

 30
 2
 6
 $\Sigma(x_1 - \overline{x_1})^2$
 $\Sigma(x_2 - \overline{x_2})^2$
 $\Sigma(x_1 - \overline{x_1})(y - \overline{y})$
 $\Sigma(x_2 - \overline{x_2})(y - \overline{y})$
 $\Sigma(x_1 - \overline{x_1})(x_2 - \overline{x_2})$

REGRESSION EXERCISE #2

- y = Delivery Time (minutes) $x_1 = Number of Stops$
- $x_2 = Distance (miles)$

 $\hat{y} = 8 + 5x_1 + 2x_2$

y	<i>x</i> ₁	<i>x</i> ₂	ON OUR ANALYSIS, PHARMACY DELIVERIES HAVE A FIXED TIME OF 8 MINUTES, PLUS
29	1	8	S FOR EACH STOP, 2 MINUTES FOR EACH MILE TRAVELED
31	3	4	
36	2	9	
35	3	6	
19	1	3	

IMPLEMENTATION IN R

USAGE OF LM()

Syntax: lm(formula, data)

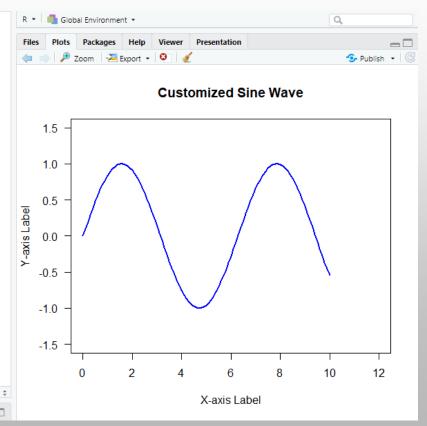
Example: Im(y~x, data=dataset)

```
😱 R 4.4.1 · ~/ 🖗
> data(mtcars)
> # Example dataset
> model <- lm(mpg ~ wt + hp, data = mtcars)</pre>
> summary(model)
Call:
lm(formula = mpg ~ wt + hp, data = mtcars)
Residuals:
   Min 1Q Median
                         3Q
-3.941 -1.600 -0.182 1.050
   Мах
 5.854
Coefficients:
            Estimate
(Intercept) 37.22727
wt
           -3.87783
hp
           -0.03177
            Std. Error
(Intercept) 1.59879
wt
        0.63273
          0 00003
hn
```

ADVANCED PLOTTING

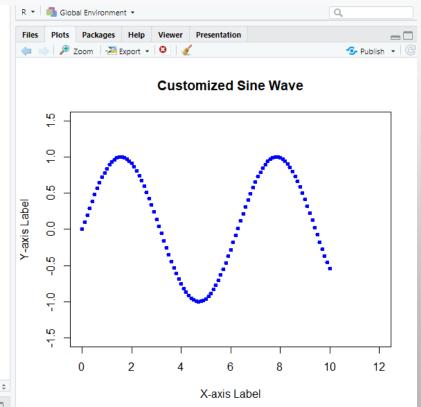
SIMPLE PLOT

```
1 # Generate sample data
  2 \times (- seq(0, 10, by = 0.1))
  3
   v \ll sin(x)
  4
  5
   # Basic plot with customization
  6
   plot(
  7
      х, у,
  8
      type = "1",
                                  # Line plot
  9
                                  # Line color
      col = "blue",
                                  # Line width
10
     1wd = 2,
      main = "Customized Sine Wave", # Title
11
     xlab = "X-axis Label", # X-axis label
12
                              # Y-axis label
      ylab = "Y-axis Label",
13
     xlim = c(0, 12),  # X-axis limits
14
      ylim = c(-1.5, 1.5),
15
                              # Y-axis limits
      las = 1
                                  # Rotate axis labels
16
17)
18
19
12:33 (Top Level) ±
                                                        R Script ±
                                                         60
Console
```

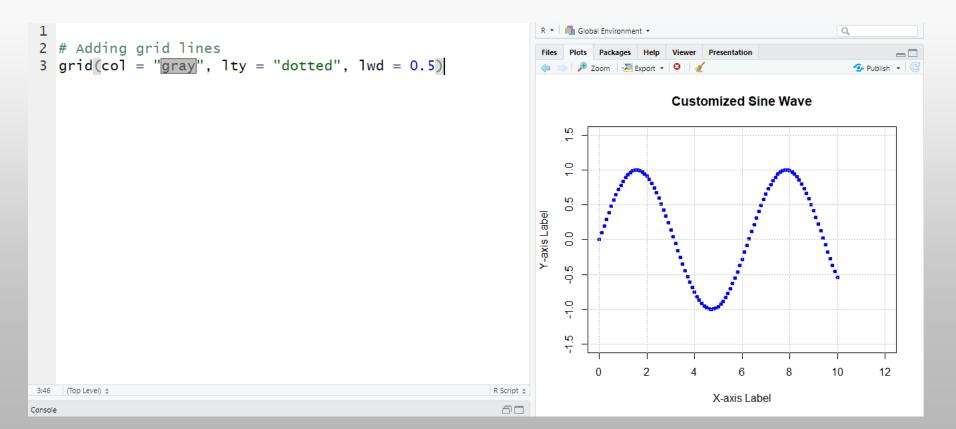


USING PCH

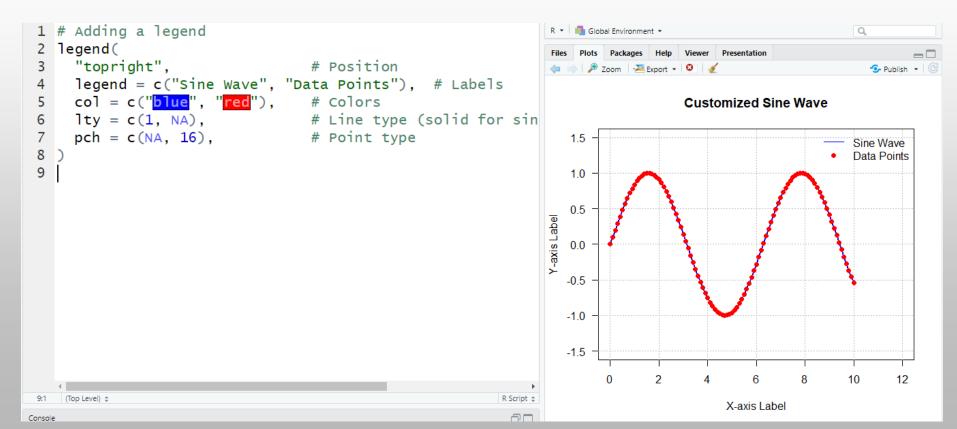
1	# Generate sample data		R •
2	x <- seq(0, 10, by = 0.1)		Files
3	y <- sin(x)		
4			
5	<pre># Basic plot with customization</pre>		
6	plot(
7	х, у,		
8		ne plot	
9		ne color	
10		ne width	
11	<pre>main = "Customized Sine Wave",</pre>	# Title	
12	<pre>xlab = "X-axis Label", # X-a</pre>		abel
13	ylab = "Y-axis Label", # Y-a	axis label	Y-axis Labe
14	-		-axi
15	ylim = c(-1.5, 1.5), # Y-a		≻
16	pch = 20		
17			
18			
19			
16:11	(Top Level) 💠	R Script 💠	
Console		an	



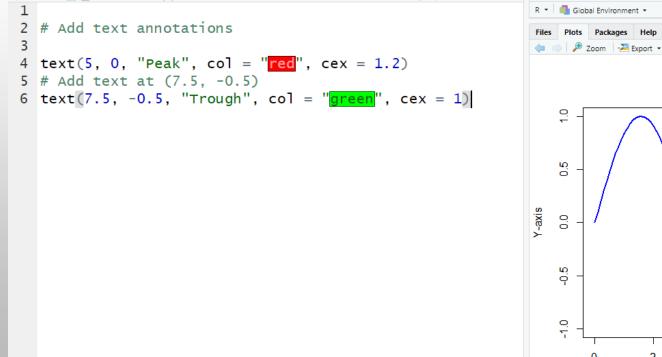
ADDING GRID LINES



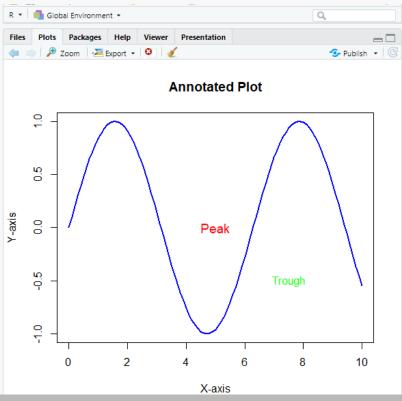
ADDING A LEGEND



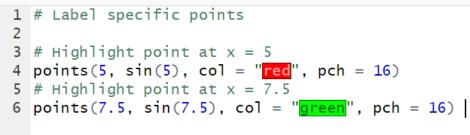
ADDING A TEXT

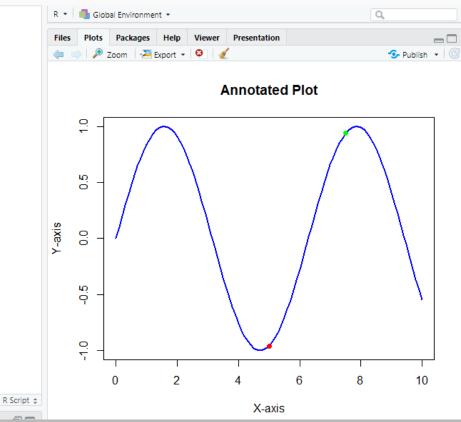


R Script ¢



LABEL SPECIFIC POINTS





6:48 (Top Level) ±

COLORS()

- > colors(distinct = TRUE)
 - [1] "white"
 - [2] "aliceblue"
 - [3] "antiquewhite"
 - [4] "antiquewhite1"
 - [5] "antiquewhite2"
 - [6] "antiquewhite3"
 - [7] "antiquewhite4"
 - [8] "aquamarine"
 - [9] "aquamarine2"
 - [10] "aquamarine3"
 - [11] "aquamarine4"
 - [12] "azure"
 - [13] "azure2"
 - [14] "azure3"
 - [15] "azure4"
 - [16] "beige"
 - [17] "bisque"
 - [18] "bisque2"
 - [19] "bisque3"
 - [20] "bisque4"
 - [21] "black"
 - [22] "hlanchedalmond"

THE COLORS() FUNCTION GENERATES ALL BUILT IN COLORS IN R

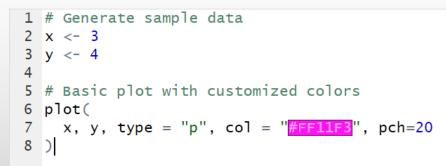
THIS CAN BE USED LIKE:

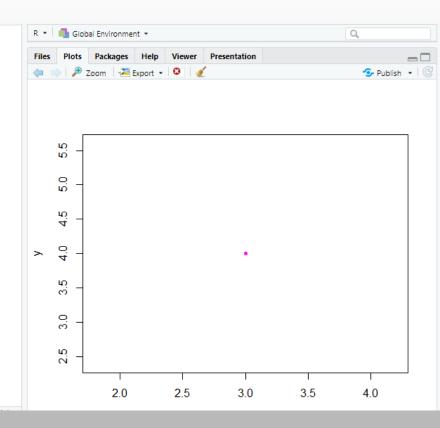
```
1 # Generate sample data
                                                                             R 🔹 🛑 Global Environment 👻
                                                                                                                          Q
  x \ll rnorm(100)
                                                                                           Help
                                                                                                Viewer
                                                                                                      Presentation
   y <- rnorm(100)
                                                                             🛑 📄 🔎 Zoom 🛛 🚟 Export 🝷 🥨 🚀
                                                                                                                            💁 Publish 👻 🕝
4
5
   # Basic plot with customized colors
                                                                                               Annotated Plot with Colors
  plot(
6
     x, y, type = "p", col = colors(), lwd = 2, # Hex cod
                                                                                CO
                                                                                                             ۰.
     main = "Annotated Plot with Colors", xlab = "X-axis",
8
9
                                                                                \sim
                                                                                                                             a
                                                                            Y-axis
                                                                                0
                                                                                     o
                                                                                                                             0
                                                                                                                           o.
                                                                                Y
                                                                                N.
                                                                                                         O.
                                                                                     -2
                                                                                               -1
                                                                                                          0
7:35
   (Top Level) 💲
                                                                     R Script $
                                                                                                         X-axis
```

0

2

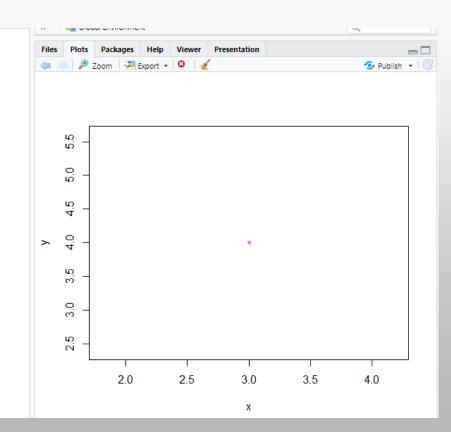
YOU CAN ALSO USE HEX CODE TO COLOR



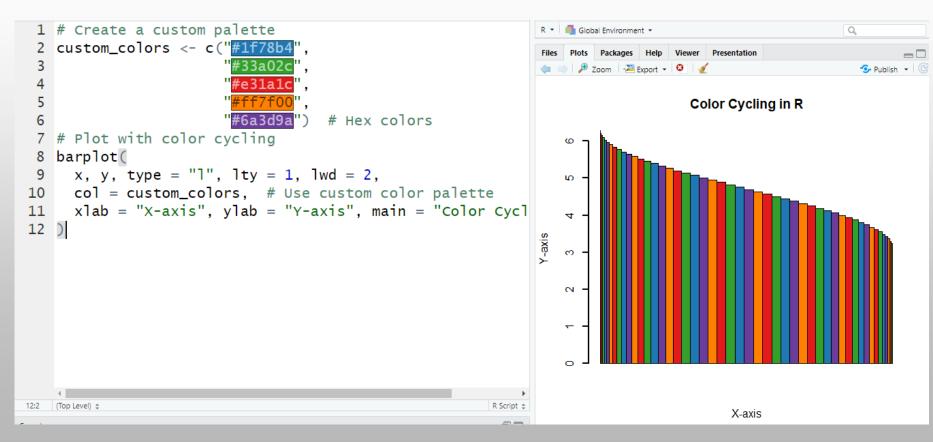


YOU CAN ALSO USE RGB()

```
> rgb(1,0.4,1)
[1] "#FF66FF"
> plot(x,y,col=rgb(1,0.4,1),pch=20)
> |
```

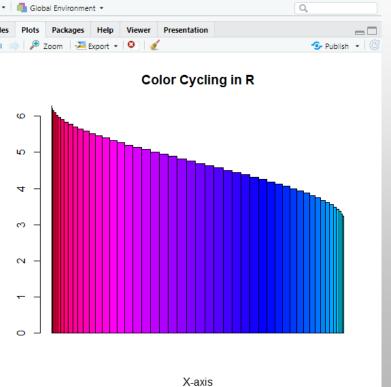


COLOR CYCLING IN R



USING COLOR PALETTES - RAINBOW(N)

```
1
                                                                                R 🔹 🛑 Global Environment 👻
 2 # Plot with color palette
                                                                                                Help
    barplot(
 3
       x, y, col = rainbow(100),
 4
      xlab = "X-axis", ylab = "Y-axis",
 5
      main = "Color Cycling in R"
 6
 7
   )
                                                                                    Q
                                                                                    LO.
                                                                                    4
                                                                                Y-axis
                                                                                    co
                                                                                    N
                                                                                    <u>-</u>
 7:2
                                                                         R Script ±
      (Top Level) ±
                                                                          20
Console
```

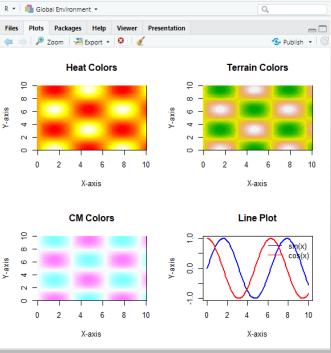


OTHER COLOR PALETTES

1 # Plot 1: Using heat.colors()

heat.colors() terrain.colors() cm.colors()

```
2 image(
      x, x, z, col = heat.colors(20),
  3
      main = "Heat Colors", xlab = "X-axis", ylab = "Y-axi
  4
  5)
  6 # Plot 2: Using terrain.colors()
                                                                  9
  7 image(
                                                                  œ
                                                               Y-axis
                                                                  ω
     x, x, z, col = terrain.colors(20),
  8
                                                                  4
      main = "Terrain Colors", xlab = "X-axis", ylab = "Y-
  9
10)
                                                                  0
11 # Plot 3: Using cm.colors()
12 image(
13
     x, x, z, col = cm.colors(20),
      main = "CM Colors", xlab = "X-axis", ylab = "Y-axis"
14
15)
16 # Plot 4: Line plot for reference
                                                                  9
                                                                  œ
17 plot(
                                                                /-axis
                                                                  6
18
      x, y1, type = "1", col = "blue", lwd = 2,
                                                                  4
      main = "Line Plot". xlab = "X-axis". vlab = "Y-axis"
19
20)
                                                                  0
20:2
    (Top Level) $
                                                          R Script 👙
                                                           20
Console
```



3D SCATTER PLOT

```
1 # Install the scatterplot3d package
 2 install.packages("scatterplot3d")
 3
 4 # Load the package
  library(scatterplot3d)
 5
 6
 7
   # Generate random data
   x \ll rnorm(50)
 8
   y <- rnorm(50)
 9
10 z <- rnorm(50)
11
12 # Create a 3D scatterplot
   scatterplot3d(
13
     x, y, z, pch = 16, color = "blue",
14
     main = "3D Scatterplot", xlab = "X-axis",
15
     ylab = "Y-axis", zlab = "Z-axis"
16
17)
18
```

