File handling is one of the ways of storing data permanently in the form of a file on a computer
hard disk drive(HDD) from where we can read it whenever required. Another option is storing
data in the database which gives us much more options to search and retrieve the information us-

ing sql queries. So far the operations using the R programs are done on a prompt/terminal which
is not stored anywhere. But in the software industry, most of the programs are written to store the
information fetched from the program. One such way is to store and fetch information to/from a
file. Two most common operations that can be performed on a file are:

e [mporting or Reading Files in R

e Exporting or Writing Files in R

When a program is terminated, the entire data is lost, because it stores the data in variables which
take place in primary memory, which is a volatile memory. Storing in a file will preserve our data
even if the program terminates. If we have to enter a large amount of data, it will take a lot of
time to enter them all. However, if we have a file containing all the data, we can easily access the
contents of the file using a few commands in R. We can easily move our data from one computer
to another without any changes. So those files can be stored in various formats. It may be stored
in a .txt(tab-separated value) file, or in a tabular format that is a .csv(comma-separated value) file
or it may be on the internet or cloud. R provides very easy methods to read these files.

In R programming, we can read and write files to perform tasks like importing data for
analysis, saving results, or processing external data sources. R provides a variety of functions and
packages to work with different types of files. Here are common methods for reading and writing
files in R:

39

Statistical Computing & R Programming

2.1.1 Reading Files in R:
Reading CSV Files:

To read data from a CSV (Comma-Separated Values) file, you can use the read.csv() function or
its related functions. These functions allow you to import data into a data frame.

Example: data <- read.csv(“data.csv”)
Reading Excel Files:

To read data from Excel files, you can use the readxl or openxlsx package to read Excel spread-
sheets.

Example using readxi:
library(readxl)

data <- read_excel(“data.xlsx”)
Reading Text Files:

To read data from plain text files, you can use functions like read.table() or readLines(). The read.
table() function is often used for reading tabular data in text files.
Example:
data <- read.table(“data.txt”, header = TRUE)

Reading Other Data Formats:
R supports various data import functions and packages to read other file formats, such as JSON,
XML, SQLite databases, and more. For specific formats, you may need to install and load the
corresponding packages.
Some more examples: One of the important formats to store a file is in a text file. R provides
various methods that one can read data from a text file.

® read.delim(): This method is used for reading .txt files. By default, point (“.”) is used as a

decimal point.

Syntax: read.delim(file, header = TRUE, sep = “\t’, dec =7} ...)

Here, file is the path to the file containing the data to be read into R. header is a logical
value. If TRUE, read.delim() assumes that your file has a header row, so row 1 is the name of-
each column. If that’s not the case, you can add the argument header = FALSE. sep is the field
separator character. “\t” is used for a tab-delimited file. dec is the character used in the file for
decimal points.

Example 1: Reading a text file using read.delim() function

myData = read.delim(“datasetfile.txt”, header = FALSE)

print(myData)
Example 2: Reading a text file using file.choese(), this code will ask the user to choose a file to
read, note that it should be executed in RStudio.

R Programming

myFile = read.delim(file.choose(), header = FALSE)
print(myFile)

Example 3: Reading file using read_tsv() function using readr package.

Importing the readr library

library(readr)

Reading a text file using read_tsv()

myData = read_tsv(“datasetfile.txt”, col_names = FALSE)

print(myData)
Example 4: We can also read a file line by line using the following code.

Import the readr library

library(readr)

Reading one line at a time using read_lines()
myData = read_lines(“datasetfile.txt”, n_max = 1)

print(myData)

Reading two lines at a time using read_lines()
myData = read_lines(“dataseffile.txt”, n_max = 2)

print(myData)
Example 5: We can also read a whole file at a time using the read_file() function.

myData = read_file(“datasetfile.txt”)
print(myData)

Example 6: We can also read a file and display the contents in a tabular format using read.table,
=ad.csv, read.csv2 and read csv functions in R programming language in the same ways as we
=ave done in the above examples. For example,

myData = read.table(“datasetfile.csv”)
print(myData)

myData = read.csv(“datasetfile.csv”)
print(myData)

myData = read.csv2(“dataseffile.csv”)

print(myData)

Statistical Computing & R Programming

2.1.2 Writing a file using R programming:

Reading and writing files is an important process of data analytics which is done in R with ease
using built in functions and libraries. We can read and write data to txt, csv or excel files.

Writing CSV Files: To write data to a CSV file, you can use the write.csv() function. Tt
allows you to save data frames to CSV format. CSV stands for Comma Separated Values. These

files are used to handle a large amount of statistical data. Following is the syntax to write to a
CSV file:

Examples:

write.csv(mydata, file="my_data.csv”)
write.csv2(mydata, file="my_data.csv")

data <- data.frame(Name = c(“Alice”, “Bob”), Age = ¢(30, 25))
write.csv(data, “output.csv”, row.names = FALSE)
Writing Data to Excel Files:

To write data to Excel files, you can use packages like writexl or openxIsx to create Excel spread-
sheets.

Example using writex!:
library(writexl)
write_xIsx(data, “output.xlsx”)
To write data to excel we need to install the package known as “xlsx package”, it is
basically a java based solution for reading, writing, and committing changes to excel files. It can
be installed as follows: install.packages(“xlIsx”)

B RO (6410
File Edit View Mise Paclkages Windows Help

¥ Ansuall.packages ("niseY)

_ Installing packsge into ‘t::iﬁacxa/91836f&ppbata!Lacal»‘&/uln-—linrs&xy/&.IB’
_ {as *Iib® is unspecified)

_ —-= Please select a CRAN mirrcr for use in this session -—--

 also inetalling the dependencies ‘rJava’, ‘misxiars’

Fig 2.1: installation of xIsx packages in R platform.
Following code can be written post installing the x1sx packages.

library(“xlsx”)

write.xlsx(mydata, file = “result.xlsx”, sheetName = “my_data”, append = FALSE)

R Programming

After executing the above code mydata content will be written to the result.xlsx file with
sheet name my_data.

Writing Data to a text file: Text files are commonly used in almost every application.
Writing to .txt files is very similar to that of the CSV files. Following is the syntax to write to a
text file:

write.table(my_data, file = “my_data.txt’, sep = *)

Writing Other Data Formats: R supports various data export functions and packages
to write data in formats such as JSON, XML, databases, and more. Depending on your needs,
vou may need to install and load the appropriate packages. Remember that file paths should be

provided as strings with the correct file extension (e.g., “.csv”, “.xlsx”) or full file paths if the file
is not in the working directory.

Before reading or writing files, make sure to install and load any required packages. The
specific functions and packages you use will depend on the format of the data you are working
with.

Most GUI programs today use a dialog box for asking the user to provide some type of input.
Like other programming languages, in R it is also possible to take input from the user using two
methods: readline() method and scan() method.

In R, we can perform input and output operations to interact with the user, read data from
external sources, and display results. Here are some commonly used input and output statements
and functions in R:

2.2.1 Input Statements:
Reading from the Console: readline(): Reads a line of text from the console. It’s often used for
taking user input.

Example: name <- readline(“Enter your name: “)

Reading Numeric Input from the Console: readline() followed by as.numeric(): You can
use readline() to read a line of text from the console and then convert it to a numeric data type
using as.numeric().

Example: age <- as.numeric(readline(“Enter your age: “))

Reading from Files: Functions like read.table(), read.csv(), and package-specific functions (e.g.,
readxl::read_excel()) are used to read data from files. These functions allow you to import data
from external sources, such as CSV, Excel, or text files.

Example: data <- read.csv(“data.csv”)

(V2]

tanistical Computing & R Programming

Readline() method: In R language readline() method takes input in string format. If a user
inputs an integer then it is taken as a string, lets say, one wants to input 255, then it will input as
2557, like a string. So we need to convert that input value to the format that we need. In this case,
string “255” is converted to integer 255. To convert the input value to the desired data type, there
are some functions in R as given below:

n=readline();

as.integer(n); # to convert to integer
as.numeric(n); # to convert to numeric type (float, double etc)
as.complex(n); #to convert to complex number (i.e 3+2i)
as.character(n) # to convert to character

as.Date(n) #to convert to date.

While taking input strings like name, address it does not require conversion but other than
string data need to be converted to respective data type using above methods.

Examples:

@ R431: -~/
> n<-readline()

1 555
> print(n)
{1} !1555"

> n=as.integer(n)

> print(n)

{1] 555

> |

We can even use the readline() method with a prompt argument to ask the user what

to input in the program. Actually prompt argument facilitates other functions to construct files
documenting. But prompt is not mandatory to use all the time. We can also use just a message in
the readline() to specify the input data.

Examples:
name=readline(“Enter your Name:”); OR
name=readline(prompt="Enter your name:");
age=readline(“Enter your age:");
age=as.integer(age);

print(name);

print(age);

R Programming

@R R431 -~/ 3]
> name=readline("Enter your name:");
Enter your name:AK

> age=readline("Enter your age:");
Enter your age:41

> age=as.integer(age);

> print(name);

[1] "AK"

>

> print(age)

[1] 41

> |

We can use multiple readline() statements in { } open and close braces to take multiple
input. For example:

{
name=readline(“Enter your name:”);
age=readline(“Enter your age:”);
phone=readline(“Enter your phone:”);
}

Scan method() : Scan() is another input method to accept data entry from the user at the
run time in the program. This method is a very handy method while inputs are needed to be taken
quickly for any mathematical calculation or for any dataset. It reads data in the form of a vector or
list. This method also reads input from a file. While taking input using scan we must press Enter
key 2 times to stop the entry.

Example:

taking input using scan()

list = scan()
print(list)
We can also specify what data we are going to accept using what parameter in the scan.
a = scan(what = double()); #for double
s = scan(what="") #for string

ch = scan(what = character()) #for character

Statistical Computing & R Programming

@® R431 -~/
> {

+ a
+ s
¥}

1: 3.4 5.7
2

Read 2 items
1: Bangalore

i

scan(what
scan(what

double());
Lish

i

L]
it

F 5

Read 1 item

> {

+ print(a);
+ print(s)
%)

i3] 3.4 5.7

[1] "Bangalore”
2

Reading file using scan: We can read a file using scan method by specifying the file name
and data type to the scan() method as given below:

taking input from the user as a string file

sf = scan(“fileString.txt”, what = “)

double file input using scan()

df = scan(“fileDouble.txt”, what = double())

character file input using scan()

cf = scan(“fileChar.txt’, what = character())

print the inputted values
print(sf)
print(df)
print(cf)

R Programming

2.2.3 Output Statement in R:

There are multiple ways of displaying data in R language, we can use print statements as used
in the above example, we can print the data by just typing variable name in the console, cat and
message() are also being used very similar to print method, and we can also use sprintf() meth-
od with data type format very similar to C programming, finally we have another method write()
which is used with an option table as write.table to print the file content.

List of output statements in R:

e print ()

e cat()

e message()

e sprintf()

e write.table()

Example:

@ R431-
> {
+ str="Hello Brother”;
+ num=123;
+ dec=45.56;
+ str;
+ print(str); :
+ sprintf("%s is a string”,str);
+ sprintf("%d is a number",num);
+ sprintf("%f is a float value",dec);
S
[1] "Hello Brother”
[1] "45.560000 is a float value"
> |

Printing to the Console:
e print(): Prints values to the console.
e cat(): Concatenates and prints values to the console.
Example:
X <-42
y <- “Hello, World!”
print(x)

cat(“The value of x is”, x, “and y is”, y, “\n”)

Statistical Computing & R Programming

Formatting Output:
e sprintf(): Formats values as a string using C-style format specifications.
® paste(): Combines strings and variables.
Example:
X <-42
y <- “Hello, World!”
formatted_str <- sprintf(“The value of x is %d and y is %s”, x, y)
paste(“The value of x is”, x, “and y is”, y)

Cat() is the same as print() function. cat() converts its arguments to character strings. This is
useful for printing output in user defined functions.

var1 = “Bangalore “
cat(var1, “is the best\n”) # to display variable’s value with message
cat("R is the best language”) # to display normal message

Message() is not used for printing output but its use for showing simple diagnostic messages but
it can be used as a cat() method. For example:

message(varl, “is the best”); # printing string with variable
message(“Download is completed”); # simple message printing
Write.table() method is used to print or write a file with a value of a variable. For example:
write.table(varl, file = “my_data.txt”); # printing my_data.txt file with variable varl
write.table(“My File: “, file = “my_data.txt”); # printing my_data file with a text.

Writing to Files: Functions like write.table(), write.csv(), and package-specific functions (e.g.,
writexl::write_xIsx()) are used to write data to files. These functions allow you to export data to
external sources.

Example:
data <- data.frame(Name = c(“Alice”, “Bob”), Age = ¢(30, 25))

write.csv(data, “output.csv”, row.names = FALSE)

- A e

Like other programming lan agés, R also has all the conditional statements like if, if-else and
switch statements. These statements are used to verify the conditional statements and execute the
task based on conditions.

e If statements

e If-else statements

R Programming

e if-else if-else Statement:
e Switch statement

If statement, is a conditional statement which takes an argument as a condition/s, if the
condition is true then it executes the statement written in the if block.

The if statement is used to execute a block of code if a specified condition is true. The basic
syntax is as follows:

if (condition) {

Code to execute when the condition is true

Flowchart to demonstrate the working of if statement.

if condition if condition
is false

Example 1 :
x<-10
if (x > 5) {

Ed

cat(“x is greater than 5.\n”)
}
Example 2 :
name="Manoj”;
age <- 19;
if(age > 18){

Statistical Computing & R Programming

print(paste(name, “is eligible to vote”))

R R431 -/
name="Manoj";
age <- 19;
if(age > 18){
print(paste(name, "is eligible to vote"))

}

1] "Manoj is eligible to vote"

§

If-else statement is a conditional statement where else block code gets executed when the condi-
tion is false. if-else Statement:

The if-else statement allows you to execute one block of code when a condition is true and
another block of code when the condition is false.

Vo 4 e e e

if (condition) {
Code to execute when the condition is true

}else {

Code to execute when the condition is false

Flowchart to demonstrate the working of if-else statements.

if condition
is true
condition . .

If condition

if code
is false s

R Programming

Example 1:

x<-3
if (x > 5) {
cat(“x is greater than 5.\n")
}else {
cat(“x is not greater than 5.\n”)
}
Example 2:

if(age > 20){
print(paste(name, “is eligible to vote”))

lelse{
print(paste(name, “is NOT eligible to vote”))

@ R431: -/
if(age > 20){
print(paste(name, "is eligible to vote"))

}else{
print(paste(name, "is NOT eligible to vote"))

}
1] "Manoj is NOT eligible to vote"
i

i
H

ok i

if-else if-else Statement:
You can use multiple else if clauses to test multiple conditions in a sequential manner.
if (condition1) {
Code to execute when condition 1 is true
} else if (condition2) {
Code to execute when condition 2 is true

}else {

Code to execute when none of the conditions are true

Statistical Computing & R Programming

Flowchart to demonstrate the working of if-else-if statements.
Start

False

Statements)
below/after if block|

Y

Stop

Example:
X<-8
if (x> 10) {
cat(“x is greater than 10.\n”)
}else if (x > 5) {
cat(“x is greater than 5 but not greater than 10.\n")
}else {

cat(“x is not greater than 5.\n”)

R Programming

Switch Statement in R is a substitute for long if statements that compare a variable to several
branch statement. It allows a variable to be tested

integral values. Switch case in R is a multiway
h statement is used to select one of several code

for equality against a list of values. The switc
blocks to execute based on a specified condition.

Syntax: switch(expression, casel, case2, case3,) OR
switch(expression,
valuel = {

Code to execute when expression equals valuel

1
value2 = {
Code to execute when expression equals value2

I
default = {
Code to execute when none of the values match expression

Flowchart to demonstrate the working of switch statement

Expression

default

Default code block

Statistical Computing & R Programming

Example 1:
day <- “Sunday”
switch(day,
“Monday” = cat(“It’s the start of the week.\n"),
“Saturday” = cat(“It's the weekend.\n"),
default = cat(“It's a regular day.\n")
)
Some key points to remember about the switch statement:
e If the expression type is a character string, the string is matched to the listed cases.
o If there is more than one match, the first match element is used.
® No default case is available.
e Ifno case is matched, an unnamed case is used.
Example 2:
player <- switch(3, “Rohit”, “Shubhman”, “Virat’, “Rahul”)

print(player)

R R431 -~/

> player <- switch(3, "Rohit", “Shubhman", "Virat", "Rahul")
> print(player)

[1] "Virat"

> |

These conditional statements in R allow us to control the flow of our code and perform
different actions based on conditions. We can use them to create flexible and responsive programs
for a wide range of applications.

For loop, while and repeat are the looping statements in R. while and repeat are similar to C pro-
gramming while and do loop, but for loop is little different and very similar to for-in statement of
javascript which is mainly to run in the list or object. Looping statements in R allow us to repeat
a block of code multiple times, iterating over a sequence, a data structure, or until a specified
condition is met. R provides several looping constructs for different situations. The main looping
statements in R are as follows:

2.4.1 For Loop 3

For Loop is useful to iterate over the elements of a list, data frame, vector, matrix, or any other ob-
Ject. It means the for loop can be used to execute a group of statements repeatedly depending upon

R Programming

the number of elements in the object. It is an entry-controlled loop, in this loop, the test condition
is tested first, then the body of the loop is executed, the loop body would not be executed if the test
condition is false. The for loop is used to iterate over a sequence of values, such as a vector, list,
or numeric range. It repeatedly executes a block of code for each value in the sequence.

Flowchart to demonstrate the working of for-in loop

for each
item in
sequence
/ﬁ xx’%’
b e
7 Last \\\ Yes
—»<_ item]
“\._ reached? -~
*\ ff
\\"\ f“@/
"
No
----—-—§80¢iy of for
Exit lvop
Syntax:
Syntax:
for (var in vector)
{
statement/s;
}
OR

for (variable in sequence) {

Code to execute for each iteration

Examplel: for loop from 1 to 5

for (x in 1: 5)

Statistical Computing & R Programming

print(x A 2)

W RAST- /s
iy for {x in 1:.5)
+ {
o+ print(x * 2)
* 3

[1] 1

[1] 4

i11.9

[1] 16
1'[1] 25

> |

Example2: for loop running in the list in concatenation

for (x in ¢(-5, 6, 9, 15, 20))

{
print(x)

maatage o o 0
> for (x in c(-5, 6, 9, 15, 20))
+ {
L+ print(x)
Z+ }
=5
[1]1 6
1[1] 9
[15
[1] 2@
> |

Example3: nested for loop

for (x in 1:4)

{
for (y in 1:x)

{

4—————_________::----llllllllIIIIllllllllllllllllllllllllllll

R Programming

print(x * y)

@R R43T -~/
> for (x in 1:4)

8 |

+ for {y in 1:x)
¥l g
+

+ }
£}
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

>

print{x * y)

b b 00 DY W RN

o

Example3: running for loop in a list of countries.
for (x in list(“India”, “US”, “UK”))
{
print(x)

@ R431 . ~/7

> For (x in list("India™, WS, 2UK"))
£

+ print(x) }

[1] "India"

{1] “US“

[1] “UK!!

&

>

Statistical Computing & R Programming

Exampled: for loop with break statement to break the loop with a condition.
for (xin c(2, 4, 6, 8, 0, 12))
{
if (x == 0)
{
break
}
print(x)
}
print(“End of Loop”)

Example 5: The next statement in R is very similar to the continue statement of C which is used
with a conditional statement to skip the statement and send control to the loop condition.

for (xinc(2, 4, 6, 8, 0, 12))

{
if (x ==0)
{
next
}
print(x)
}
print(‘end of loop)

Example 6: for loop to create histogram multiple plots
creating a matrix of data
mat <- matrix(rnorm(100), ncol =3)
setting up the plot layout
par(mfrow = c(2, 3))
loop over columns of the matrix
for (iin 1:3) {
create a histogram for each column
hist(mat], i], main = paste("Column”,i), xlab = “Values”,col = “red”)

}

R Programming

Bouss -
e Tt Coar Viw Piows dession i
= s

> # creating 3 matrix of dats
N

> mat <- matrix{rnorm{188), ncol =3)

arning message:

In matrix{rnorm{108), ncol = 3) :

dats length [188] is not 2 sub-multiple or multiple of the number of rows [34]

Column 2 Column 3

>
>
> # setting up the plot layout

> par{mfrow = «{2, 3}}

>

> # loop over columns of the matrix

> for (i in 1:3) {

+ # create a histogram for each column

+ hist(mat], i}, main = paste(“Column”,i}, xlab = “Values”,col = “red“)
ok 3

>

Franuency
4

Fraquancy
s

Figure 2.2 : output the program creating multiple plots
2.4.2 :While leop

While loop is used when the exact number of iterations of a loop is not known beforehand. It
executes the same code again and again until a stop condition is met.

Flowchart to demonstrate the working of while loop.

while' condition

{
}

conditional code

if candition
is true

If condition
is false

Mhile loop Syntax:
while (condition) {
statement/s

update_expression/increment or decrement of the variable

Statistical Computing & R Programming

Examplel:
x<-1 # initialization of a variable
while (x < 6) {
print(x)
X=x+1 # update expression
}

@R R431- ~f 5 :] s
> x<- 1 # initialization of a variable

> while (x < 6) {

+ print(x)
-+

+

X = X + 1 # update expression

Break and next can be applied with while loops as well as demonstrated in the above for
loop examples.

Example 2:
x<-1 # initialization
while (x < 10) {
if (x==5){
to skip iteration when x is 5
X<-X+1
next
}
print(paste(“The current value of x is:”, X))
X<-X+1

}

2 Programming

R R431 .~/
> X <~ 1 # initialization
> while (x < 18) {

+ if {x == 5y 4

+ # to skip iteration when x is 5

+ X & .+ 3

+ next

+ 3

o+ print(paste("The current value of x is:", x))
+ X <- X+ 1

5

[1] "The current value of x is: 1"

[1] "The current value of x is: 2"
[1] "The current value of x is: 3"
[1] "The current value of x is: 4"
[1] "The current value of x is: 6"
[1] “"The current value of x is: 7"
[1] "The current value of x is: 8"
[1] "The current value of x is: 9"

>3
the 5th value of x is skipped in the iteration because of the next statement.
Example 3:
count <- 1
while (count <= 5) {
cat(*Count:”, count, “\n”)

count <- count + 1

}
2.4.3: Repeat loop

Repeat loop in R is used to repeat a block of code multiple number of times. And it executes
the same code again and again until a break statement is found. Repeat loop, unlike other loops,
doesn’t use a condition to exit the loop; instead it uses a break statement that executes if a condi-
tion within the loop body results to be true. An infinite loop in R can be created very easily with
the help of the Repeat loop. The keyword used for the repeat loop is ‘repeat’.

Statistical Computing & R Programming

Flowchart to demonstrate the working of repeat loop.

Syntax:
repeat {
}
Example 1:
count <- 1
repeat {

cat(*Count:”, count, “\n”)
count <- count + 1

if (count > 5) {

Enter loop

G@cﬁf of Loop

Exit Laop

» Remaining bady

Block statement/s
if(condition) {

break

R Programming

break

}
Example 2:

data <- c(“Bangalore”)

X <-1 # x is initialized with 1

repeat {

print(data)

x<-x+1 #incrementing x by 1
Breaking condition

if(x >5) {

break

@ R431- -~/
> data <- c{"Bangalore")
> X <- 1 # x is initialized with 1

> repeat {

+ print{data)

+ X <~ X + 1 # incrementing x by 1
+ # Breaking condition

+ if{x »5) {

+ break

+ }

[1] "Bangalore”
[1] "Bangalore™
[1] "Bangalore”
[1] "Bangalore"
[1} "Bangalore”

Functions are useful when we want to perform a certain task multiple times. A function accepts
input arguments and produces the output by executing valid R commands that are inside the
function. In the R program we can create functions, the function name and the file in which we
are creating the function need not be the same and we can have multiple functions in a program.

Statistical Computing & R Programming

Functions are an essential concept in R programming. They are blocks of code that perform
specific tasks or operations and can be called and reused multiple times. Functions in R can take
arguments (input values), process them, and return results (output values). Here’s how to define
and use functions in R:

I. Defining a Function:

You can define a function in R using the function() keyword. The basic syntax of a function
definition is as follows:

function_name <- function(arg1, arg2, ...) {
Function body: code to perform the task
return(result) # Optional: return a result
}
e function_name is the name you choose for your function.
e argl, arg2, ... are the arguments (input values) that the function accepts.
e The function body contains the code to perform the desired task.
e return(result) is optional and used to return a result.
Example of a Simple Function:
Define a function that adds two numbers
add_numbers <- function(a, b) {
result<-a+b
return(result)
}
II. Calling a Function:

You can call a function by using its name and providing the necessary arguments. The
function will execute and return a result if a return() statement is used.

result <- add numbers(3, 5)
cat(“The result is”, result, “\n”)
III. Types of functions:
e Built-in functions

e User defined functions

2.5.1 Built-in functions

Built-in functions are available in R which we can use to perform any common tasks. While user
defined functions are created by programmers i.e. by us to write common code in a defined block
with or without parameters.

R Programming

Some examples of built-in functions are: sum(), max(), min(), seq(), mean() etc.

sum() is used to perform addition on the given range in the sum() function. Max and min
are to return maximum and minimum from the given range, seq() is used to generate the sequence
numbers between the given range and mean is to compute the mean value for the given range.

Examples:
print(sum(5:10)) #Finding max of numbers 5 and 10.
print(max(5:10)) #Finding max of numbers 5 and 10.
print(min(5:10)) #Finding min of numbers 5 and 10.
print(seq(1,10)) # Creating a sequence of numbers from 1 to 10.
print(mean(5:10)) # Finding the mean of numbers from 5 to 10.
Execution:
@ R431 - R '
> print(sum(5:18)) #Finding max of numbers 5 and 10.
[1] 45
> print(max(5:10)) #Finding max of numbers 5 and 1@
[1] 1e
> print(min(5:18)) #Finding min of numbers 5 and 18.
(11 5

> print(seq(1,10)) # Creating a sequence of numbers from 1 to 1e.
(1] & 2 3. 4 5. 6 7 8 516

> print(mean(5:108)) # Finding the mean of numbers from 5 to 10.

[1] 7.5

> |

Built-in Functions: R comes with a large number of built-in functions that perform various
tasks, from mathematical operations to data manipulation and statistical analysis. Some common
ouilt-in functions include mean(), sum(), length(), and print(). You can use these functions directly

without defining them.
numbers <- c(2, 4, 6, 8, 10)
avg <- mean(numbers)
cat(“Average:”, avg, “\n”)
2.5.2 User Defined functions:

¥z can create our own functions for any specific tasks which can be reused in the program. A
“nction can take zero, single or multiple parameters and can return results as a single data or a

Statistical Computing & R Programming

Function Arguments: Functions can have both named and unnamed arguments. Named
arguments make it clear which value is being passed to which parameter, and you can use them
in any order. Unnamed arguments are matched in the order they appear in the function definition.

Using named arguments

resulti <- add_numbers(a = 5, b = 3)

Using unnamed arguments
result2 <- add_numbers(5, 3)

Default Values for Arguments: You can set default values for function arguments, which
are used when the caller does not provide a value for that argument.

Define a function with default values
power <- function(base, exponent = 2) {
result <- base*exponent

return(result)

Calling the function with and without providing the exponent argument
result1 <- power(2) # Uses default exponent (2)

result2 <- power(2, 3) # Uses provided exponent (3)

Example to create a function with single parameter:
areaOfsquare = function(side){ # creating a function
area = side” side
return(area)
}

print(areaOfsquare(8)) # calling the function

R R431 -~/

areaOfsquare = function(side){ # creating a function
area = side* side

return{area)

print{areaOfsquare(8))
1] 64

>
+
5
3
>
[
>

R Programming

Example to create a function with multiple parameter:

si=function(p,r.t)

{
res=(p*r't)/100
return (res)
}
print(si(1000,10,2))
® R431 - /7
> si=function(p,r,t)
A
* . ress(pPret)/106
i return (res)
L
> print(si(1000,10,2))
[1] 200
>

Example to create a function without parameter and without return:

fun=function() # creating a function
{

print(“Hello R programmers”)
}

print(fun()) # calling function

@R R431 -~/

> fun=function() # creating a function
* 4

+ print{“"Hello R programmers")

3

> print(fun{)) # calling function
[1] "Hello R programmers"

[1] "Hello R programmers"”

> |

Variable Scoping: R uses lexical scoping, which means that variables defined within a
function are local to that function by default. You can use the <<- operator to assign values to
global variables from within a function. Functions are a fundamental building block in R and
are used extensively for organizing code, improving code reusability, and encapsulating specific
tasks. You can create custom functions tailored to your specific needs, making R a versatile and
powerful programming language for data analysis and statistical computing.

Statistical Computing & R Programming

2.5.3 Inline Functions:

We write inline functions when it’s small and other looping statements are not used in the func-
tion, it executes faster compared to other functions. To create an inline function we have to use the
function command with the argument x and then the expression of the function.

In R, you can create inline or anonymous functions using the function() keyword, which
allows you to define a small, unnamed function on the fly. These inline functions are often used
for simple, one-time calculations or operations. They are also known as “lambda” functions or
“anonymous” functions.

The basic syntax for creating an inline function is as follows:
function(arg1, arg2, ...) {
Function body: code to perform the task
}
arg1, arg2, ... are the function’s arguments (input values).
e The function body contains the code to perform the desired task.
® You can optionally return a result using the return() statement.
Example 1 of an inline function that squares a number:
square <- function(x) {
return(x2)
}
We can also create an equivalent inline function using the function() keyword:
square <- function(x) x*2
You can then use this inline function to calculate the square of a number, as shown here:
result <- square(5) # Calculate the square of 5
cat(“The result is”, result, “\n”)
Example 2:
fun = function(x) x*2*5+x/3
print(fun(5))
print(fun(-4))
print(fun(0))

R Programming

@® R431 -~/ -

> fun = function(x) x*2*5+x/3
> print(fun(5))

[1] 126.6667

> print(fun(-4))

[1] 78.66667

> print(fun(e))

[1] ©

> |

Inline functions are handy for short and simple operations, especially when you don’t want

to create a named function or when you need to use a function as an argument to another function,
such as in the apply() family of functions or the sapply() function.

Here’s an example of using an inline function with the sapply() function to apply it to a
vector of numbers:

numbers <- ¢(1, 2, 3, 4, 5)
squared_numbers <- sapply(numbers, function(x) x2)
cat(“Squared numbers:”, squared_numbers, “\n”)

In this example, the inline function function(x) x*2 is applied to each element of the
numbers vector, resulting in a new vector with the squared values.

Inline functions are a powerful and flexible feature in R that allow you to create and use
functions quickly for specific tasks without the need to define a named function.

Exception is a runtime error which occurs due to some conditions at the run time of a program.
Runtime errors may be divided by zero, file not found, array out of range and so on. If we encoun-
ter any unexpected errors while executing a program, we need an efficient and interactive way
to debug the error and to know what went wrong. Some errors are expected but sometimes the
models fail to fit and throw an error. In R programming, exceptions are a mechanism for handling
runtime errors or exceptional situations that may occur during the execution of a program. R pro-
vides a way to capture and handle exceptions using the tryCatch() function and related constructs.

Statistical Computing & R Programming

Flowchart to demonstrate the exception handling in a program.

L Program j

v

Exception
Occurred?

No
Exception

Handled?

Yes
No 4/

= Finally Block is Executed

There are basically three methods to handle such conditions and errors in R programming :
® try(): It helps us to continue with the execution of the program even when an error occurs.

e tryCatch(): It helps to handle the conditions and control what happens based on the
conditions.

e withCallingHandlers(): It is an alternative to tryCatch() that takes care of the local handlers.
2.6.1 Try method:

An expression that may expect an exception can be written in try block,It helps us to continue
with the execution of the program even when an error occurs.

Example:

QR R431 .-~/
> X <= 5

> X < 6

[1] TRUE

Sk g

[1] FALSE

> try(x>7)
[1] FALSE

> |

R Programming

2.6.2 tryCatch():

Unlike other programming languages such as Java, C#, and so on, the try-catch-finally statements
are used as a function in R. The main two conditions to be handled in tryCatch() are “errors” and
“warnings”.

The tryCatch() function is the primary tool for capturing and handling exceptions in R. It
allows you to attempt a potentially error-prone operation and specify actions to take in case an
exception occurs.

The basic structure of tryCatch() is as follows:
result <- tryCatch({
Code that may cause an exception
}, error = function(err) {
Code to handle the exception
}, finally = {
Code to execute after the try block, whether there’s an exception or not
D
® The code inside the first block is the code that may generate an exception.

® The error argument is a function that specifies how to handle exceptions. This function
receives the exception object err as an argumerit.

® The finally block is optional and contains code that executes after the try block, whether an
exception occurs or not.

Examples 1:

Attempt to divide by zero
result <- tryCatch({

x<-5/0
}, error = function(err) {

cat(“Error:”, conditionMessage(err), “\n”)

1, finally = {

cat(“The operation is complete.\n")

)

In this example, the division by zero operation is likely to raise an exception, but the
tryCatch() function captures it and prints an error message.

Examples 2:
tryCatch(

Statistical Computing & R Programming

Specifying an expression
expr = {
1+
print(“Everything was fine.”)
h
Specifying an error message
error = function(e){
print(*There was an error message.”)
b
Specifying warning message
warning = function(w){

print(“There was a warning message.”)

h
finally block
finally = {
print(“finally Executed”)
}

) # end of tryCatch block.

Output after executing the code

R R431- /9
> tryCatch(
: # Specifying an expression
expr = {
1 +2
print("Everything was fine.")

*
Specifying an error message
error = function(e){
print("There was an error message.")
»
Specifying warning message
warning = function(w){
print(“"There was a warning message.")

2
finally block
finally = {
print(“finally Executed")

P S s e

}
+) # end of tryCatch block.
[1] "Everything was fine."
[1] "finally Executed™
>

R Programming

After executing the code with wrong expression

@ R431 -
> tryCatch(
Specifying an expression
expr = {
1+ 'a’
print(“Everything was fine.”™)

%

1
Specifying an error message
error = function{e){
print("There was an error message.”)
1.
Specifying warning message
warning = function{w){
print{“There was a warning message.")
¥,
finally block
finally = {
print("finally Executed”)
3

+)} # end of tryCatch block.
[1] "There was an error message."
[1] "finally Executed”

>

N L T T T S

2.6.3 withCallingHandlers():

It is an alternative to the tryCatch() method that takes care of the local handlers.The only differ-
ence is that tryCatch() deals with existing handlers while the withCallingHandlers() deals with
local handlers.

Example: handler is written within a function to handle local errors of the function body.
check <- function(expression){
withCallingHandlers(expression,
warning = function(w){
message(“warning :\n”, w)
2
error = function(e){
message(“error :\n”, e)
h
finally = {

message(“Completed Execution”)

Statistical Computing & R Programming

H
}
check({10/2}) # calling the check function
check({10/0})

check({10/'abc’}) # calling the check function with the wrong expression to generate error.
Exception Classes:

R has a variety of exception classes, including error, warning, and message, which can be caught
and handled differently. You can use the conditionClass() function to determine the class of an
exception and then apply specific error handling for different types of exceptions.

Custom Exceptions: You can also create custom exceptions in R by extending the base
error class. This is useful when you want to provide more specific information about the error.

Here’s an example of defining and raising a custom exception:
my_custom_error <- function(message) {
structure(
list(message = message, call = sys.call(-1)),
class = “my_custom_error”

)

tryCatch({
stop(my_custom_error(“This is a custom error message.”))
}, error = function(err) {
cat(“Custom Error Message:”, conditionMessage(err), “\n”)

D

This code defines a custom exception using the my_custom_error function and raises it
using stop(). The tryCatch() block then handles the custom error.

Handling exceptions in R is essential for writing robust and error-tolerant code, especially
in data analysis and scientific computing, where unexpected issues can arise. The tryCatch()
function and related techniques provide the means to capture, inspect, and respond to exceptions
appropriately in your R code.

R Programming

Timing in R is the amount of time it takes for a particular operation, function, or set of operations
to execute in R code. Knowing how and why to measure R timing is usually a sign of moving
from beginner to more advanced R programmer. Because first we focus on getting our code to
work, followed by optimizing our R code to execute faster. It is useful for comparing the perfor-
mance of algorithms or how we have approached initial versions of implementation. Comparing
versions can help choose the best approach and ensure code is running efficiently. It’s an import-
ant option in R for programmers to design an efficient code.

We can measure the execution time of our code using various techniques and functions to
assess the performance of our code or to identify bottlenecks. Here are some common ways to
measure timings in R:

2.7.1 Timing functions:

R provides several built-in functions for measuring timing, including Sys.time(), system.time(
), and proc.time().

e Sys.time() is used to determine current system time and can be called multiple times to
calculate elapsed time.

e system.time() function returns the amount of CPU time used by the R process.
The system.time() function allows you to measure the execution time of a specific expression
or block of code. It returns an object containing information about user time, system time,
and elapsed time.

result <- system.time({
Code to measure execution time
for (i in 1:1000000) {
sqrt(i)
}
D

cat(“User time:”, result[1], “\n”)
cat(“System time:”, result[2], “\n”)
cat(“Elapsed time:”, result[3], “\n”)

e proc.time() function returns the amount of CPU time used. It can be useful for
measuring the time taken by a sequence of expressions or function calls.

Statistical Computing & R Programming

Examples for measuring timing with all these three functions:

@R R431 -~/
> system.time(print(5>1))
[1] TRUE
user system elapsed
e e 2]
> start <- Sys.time()
> print(i@>=5)
[1] TRUE
> Sys.time{() - start
Time difference of ©.002469063 secs
>
> start2 <- proc.time()
> print(185>=5)
[1] TRUE
> proc.time() - start2
user system elapsed
8.82 2.00 g.e0
>
> start2 <- proc.time()

i

» 4

Computing the process time for simple interest function:

R R34y . .
start2 <- proc.time()
si=function(p,r,t)
{
res=(p*r*t)/100
return (res)
3
print(si(1eee,10,2))
[1] 200
> proc.time() - start2
user system elapsed
92 e e

Vot k4ot

>
> proc.time()-start2
user system elapsed
9.17 2.81 22.81
>
As demonstrated in this example we can start the process time at the beginning of a program
and subtract the start time at the end of the program.

R Programming

microbenchmark Package:

The microbenchmark package is a powerful tool for measuring the execution time of small code

snippets with high precision. It allows you to compare the performance of different approaches to
solving a problem.

Example:
library(microbenchmark)
result <- microbenchmark(
method1 = {
Code for method 1
b
method2 = {
Code for method 2
b
times = 100
)
print(result)
profvis Package:

The profvis package is used for profiling R code to identify performance bottlenecks and visualize
code execution. It helps you understand where your code is spending the most time.

Example:
library(profvis)
profvis({
Code to profile
for (i in 1:1000000) {
sqrt(i)

D
Benchmarking with the bench Package:

The bench package provides a comprehensive framework for benchmarking R code and provides
detailed performance information, including memory usage.

Example:
library(bench)

result <- mark({

Statistical Computing & R Programming

Code to benchmark
for (i in 1:1000000) {
sqrt(i)
}
b))
summary(result)
Benchmarking with the rbenchmark Package:

The rbenchmark package allows you to compare the execution time of multiple functions or code
snippets.

Example:
library(rbenchmark)
result <- benchmark(
method1 = {
Code for method 1
h
method2 = {
Code for method 2
h
replications = 100
)
print(result)

Measuring execution time is essential for optimizing your code and identifying areas that
might need improvement. The choice of timing measurement method depends on the level of
precision and the specific requirements of your performance analysis.

2.7.2 Optimizing Timing:

By identifying bottlenecks and applying code optimization techniques, R programmers can im-
prove the speed and efficiency of their R code. Optimizing the execution time of your code in R
involves identifying and addressing performance bottlenecks. Here are some strategies and tech-
niques to optimize the timing of your R code:

Use Vectorized Operations: R is designed to work efficiently with vectors and matrices.
Instead of using loops to perform operations on individual elements, try to use vectorized functions
and operations. Vectorized code is generally faster than non-vectorized code. '

Example:

R Programming

Non-vectorized code
result <- numeric(1000)
for (i in 1:1000) {

resultfi] <-i* 2

Vectorized code
result <- 1:1000 * 2

Avoid Global Variables: Minimize the use of global variables, which can lead to slower
code execution. Instead, use function arguments to pass data to functions, which helps improve
code modularity and performance.

Use Efficient Data Structures: Choose the most appropriate data structures for your data
and operations. For example, use data frames for tabular data and matrices for numeric operations.
Avoid unnecessary conversions between data structures.

Memory Management: Pay attention to memory usage. If your code is using a large
amount of memory, consider using data.table, ff, or other memory-efficient data structures.
Regularly remove unnecessary objects from memory using rm(), and use the gc() function to
trigger garbage collection.

Parallel Processing: Consider using parallel processing to take advantage of multi-core
processors. The parallel package and the foreach package, along with parallel backends like
doParallel, can help parallelize tasks.

Optimize Functions: Profile your functions to identify performance bottlenecks. Tools
like profvis, microbenchmark, and bench can help you pinpoint slow code and optimize it. Look
for opportunities to reduce function calls, minimize duplicated calculations, and simplify logic.

Avoid Unnecessary Data Copies: Creating unnecessary copies of data can be time-
consuming and memory-intensive. Whenever possible, modify data in-place rather than creating
new copies. Use functions like data.table::set() to modify data frames without copying.

Use Efficient Package Functions: R has a vast ecosystem of packages that provide
optimized functions for various tasks. Make use of these packages to take advantage of their efficient
algorithms. For example, the data.table package is known for its speed in data manipulation.

Caching and Memoization: Implement caching and memoization to store and reuse
intermediate results of computationally intensive calculations. This can significantly reduce
redundant computations.

Statistical Computing & R Programming

Profiling: Profile your code to identify performance bottlenecks using tools like Rprof,
profvis, or the built-in system.time() function. Profiling helps you understand where your code
spends the most time.

Preallocate Data Structures: When creating large data structures, preallocate memory to
avoid dynamic resizing, which can be slow. Use functions like matrix() or numeric() to preallocate
matrices and vectors.

Optimize I/0O Operations: Minimize unnecessary file and data I/O operations. Reading
and writing to disk can be a significant performance bottleneck. Consider using binary formats
like Feather or Parquet for data storage and exchange.

Compiler: Consider using the compiler package to byte-compile your functions. This can
lead to performance improvements for certain types of computations. ’

Use Efficient Sorting Algorithms: When sorting data, choose an appropriate sorting
algorithm, depending on the size of the data and the specific sorting requirements. The base R
function sort() uses a hybrid sorting algorithm that adapts to the data size.

Consider Package-Specific Optimization: Some packages, like dplyr, data.table, and
sqldf, provide specific optimizations for common data manipulation tasks. Familiarize yourself
with these packages and their features.

Identifying Bottlenecks with Rprof(): One of the first steps in optimizing timing in R is
identifying the bottlenecks in the code. Bottlenecks are areas of the code that take up a significant
amount of time and slow down the overall execution time of the script. One way to identify
bottlenecks is by using the Rprof() function, which provides a profile of the code and identifies
the functions that take up the most time.

Code Optimization Techniques: Once identified, users can apply R code optimization
techniques to address the bottleneck and improve the speed and efficiency of their code. Some of
these techniques include:

® Vectorization: vectorized operations, instead of loops, can improve the speed of R scripts.

e Caching: Caching frequently used data or results can reduce the amount of time spent
recalculating them. Classic trick.

® Parallelization: Splitting up tasks and running them in parallel can improve the speed of R
scripts especially on multi-core systems.

® Memory management: Efficient memory management, such as removing unused objects
and avoiding excessive copying, can reduce the execution time of R scripts.

Optimization techniques is a different subject than ways to time code in R, but in short.

by applying techniques such as those listed above, we will be able to optimize the timing of our
R programs. Optimizing code in R often involves a combination of these techniques, and the

R Programming

approach may vary depending on the specific requirements of your project. Profiling your code to
identify performance bottlenecks is a critical step in the optimization process. Additionally, keep
in mind that optimization should not compromise code readability and maintainability.

In R programming, scope refers to the accessibility or visibility of objects (variables, functions,
etc.) within different parts of your code. In R, there are two main types of variables: global vari-
ables and local variables. Variable declared outside a function is a global variable which can be
accessed from any block of the program, and a variable declared within a function is a local vari-
able which is only accessible from within the function, not from outside of the function.
Visibility refers to the accessibility of objects (variables, functions, and data) within different
scopes or environments. Understanding visibility is essential for writing clean and organized
code and for managing the scope of objects within your R scripts or packages. There are several
concepts related to visibility in R:
Global and Local Scopes:
e Global Scope: Objects defined in the global environment (top-level) are accessible from
any part of your R script, function, or package.
® Local Scope: Objects defined within a specific function or block of code are only accessible
within that function or block. They have a local scope and are not visible outside of that
context.
Lexical Scoping: R uses lexical scoping, which means that the scope of an object is determined by
whereitis defined in the source code. Inner functions canaccess variables from their parent functions.
Example 1:

x<-10

my_function <- function() {
y<-5
inner_function <- function() {
cat(ele vy,)
}

return(inner_function)

}

result_function <- my_function()

result_function()

Statistical Computing & R Programming

In this example, inner_function has access to both x and y because it’s defined within the
scope of my function.

GlobalEnv and .Environment:

® .GlobalEnv refers to the global environment where objects defined at the top level are stored.
You can access global objects using the <<- operator.

e .Environment refers to the current environment in which a function or block of code is
executing. You can access local objects using the <- operator.

Visibility Rules:
® By default, objects in the global environment are visible to functions unless an object with
the same name is defined within the function’s local scope.

e Ifan object with the same name is defined within a local scope, it takes precedence over the
global object.

Scoping Functions: R provides functions like 1s(), Is.str(), and objects() that help you list and
examine objects within a specific environment.

Example 2:

x <-10

Is()

Is.str()

my_function <- function() {
y<5
Is()

}

my_function()
These functions allow you to inspect the objects visible within a given environment.
Example 2:
x<-100

check=function()

{

x<-50

print(paste(“Local x value: “, x))
}
print(check())

print(paste(“Global x value: “, x))

R Programming

@® R431 -~/
X<-166
check=function()

{

>
5
+
+ X< -50
<he
£
5

print(paste("Local x value: ", x))
}
print{check())
[1] "Local x value: 5e"
[1] "Local x value: 5e"
> print(paste("Global x value: ", X))
[1] "Global x value: 1ee"
>

Accessing Non-Visible Objects:

In some cases, you may need to access objects that are not in your current environment. You can
use the get() function to access global objects by name, even from within a function’s local scope.

Example:

x<-10

my_function <- function() {

cat(“x from global scope:”, get(“x”), “\n”)
}
my_function()

Understanding visibility in R is crucial for writing organized and efficient code. Proper
scoping of objects and functions helps prevent naming conflicts, improve code readability, and
ensure that objects are accessible where they are needed.

Packages in R lénguage are a set of R functions, compiled code, and sample data. These are
stored under a directory called “library” within the R environment. By default, R installs a group
of packages during installation. Once we start the R console, only the default packages are avail-
able by default. Other packages that are already installed need to be loaded explicitly to be uti-
lized by the R program that’s getting to use them.

In R, packages are collections of functions, data sets, and documentation bundled together
for specific purposes or tasks. Packages are an essential part of the R ecosystem, as they provide
a way to extend R’s functionality and leverage the work of other R users and developers.

Statistical Computing & R Programming

2.9.1 Repositories of R programming packages:

A repository is a place where packages are located and stored so you can install R packages from
it. Organizations and Developers have a local repository, typically they are online and accessible
to everyone. Some of the most popular repositories for R packages are:

® CRAN: Comprehensive R Archive Network(CRAN) is the official repository, it is a network
of FTP and web servers maintained by the R community around the world. The R community
coordinates it, and for a package to be published in CRAN, the Package needs to pass several
tests to ensure that the package is following CRAN policies.

® Bioconductor: Bioconductoris a topic-specific repository, intended for open source software
for bioinformatics. Similar to CRAN, it has its own submission and review processes, and
its community is very active, having several conferences and meetings per year in order to
maintain quality.

® Github: Github is the most popular repository for open-source projects. It’s popular as it
comes from the unlimited space for open source, the integration with git, a version control
software, and its ease to share and collaborate with others.

2.9.2 Installing R Packages From CRAN:

For installing R Package from CRAN we need the name of the package and use the following
command:

install.packages(“package name”)
install.packages(c(“vioplot”, “MASS”))

2.9.3 Update, Remove and Check Installed Packages in R:

To check what packages are installed on your computer, type this command:

installed.packages()

To update all the packages, type this command:
update.packages()

To update a specific package, type this command:

install.packages(“PACKAGE NAME")

2.9.4 Installing Packages Using RStudio UI:;

In R Studio goto Tools -> Install Package, and there we will get a pop-up window to type the
package you want to install, Under Packages, type, and search Package which we want to install
and then click on install button.

R Programming

Istelifior = @ GionimBpatne |
Reposito CRA!\& v

' Packages {separate mmmple with spam cr mmma}

f‘ ‘fbfa*‘y‘ .
cmmszasamppnaza{mcamwb ry/a.

(< install de;}emieﬁéﬁ ‘;

= ,
- e) (o |

Figure 2.3: Tool->Install packages in RStudio

2.9.5 How to Load Packages in R Programming Language:

When a R package is installed, we are ready to use its functionalities. If we just need a sporadic
use of a few functions or data inside a package we can access them with the following notation.

= Load a package using the library function
library(dplyr)

= Load a package using the require function
require(dplyr)
Both functions attempt to load the specified package, but there is a subtle difference between
e two: library() returns an error if the package is not found or cannot be loaded, whereas
require() returns a warning and sets the value of the package variable to FALSE.
2.9.6 Difference Between a Package and a Library:

fSbrary(): It is the command used to load a package, and it refers to the place where the package
: contained, usually a folder on our computer.

Package: It is a collection of functions bundled conveniently. The package is an appropriate
#2y to organize our own work and share it with others.

Statistical Computing & R Programming

. -

Short Questions:
1

2;
3.
4.
S
6.
1.
8.
9.

._
=

Write the input and output statements of R programming.
Write the syntax of if statement in R.

List the looping statements in R.

Define functions in R programming.

What is an exception? Give an example.

Write the syntax of for loop in R.

Write the syntax for while loop in R.

What is timings in R.

What is visibility in R.

Define package.

Long Questions:

13

S i s D AR N, e e B L

._.
=

Explain the concept of reading and writing files in R.

Explain the different input and output statements in R.

Explain the different conditional statements in R.

Explain the different looping statements in R.

Differentiate between while loop and repeat loop.

Explain break and next statement in R with an example of each.
Differentiate between try() and trycatch() statements.

Create an R function for computing simple interest.

What is exception handling? Write an R code to handle exceptions.

Explain the package in R with a suitable example.

sesfesksesk

	IMG_20240429_0039.tif
	IMG_20240429_0040.tif
	IMG_20240429_0041.tif
	IMG_20240429_0042.tif
	IMG_20240429_0043.tif
	IMG_20240429_0044.tif
	IMG_20240429_0045.tif
	IMG_20240429_0046.tif
	IMG_20240429_0047.tif
	IMG_20240429_0048.tif
	IMG_20240429_0049.tif
	IMG_20240429_0050.tif
	IMG_20240429_0051.tif
	IMG_20240429_0052.tif
	IMG_20240429_0053.tif
	IMG_20240429_0054.tif
	IMG_20240429_0055.tif
	IMG_20240429_0056.tif
	IMG_20240429_0057.tif
	IMG_20240429_0058.tif
	IMG_20240429_0059.tif
	IMG_20240429_0060.tif
	IMG_20240429_0061.tif
	IMG_20240429_0062.tif
	IMG_20240429_0063.tif
	IMG_20240429_0064.tif
	IMG_20240429_0065.tif
	IMG_20240429_0066.tif
	IMG_20240429_0067.tif
	IMG_20240429_0068.tif
	IMG_20240429_0069.tif
	IMG_20240429_0070.tif
	IMG_20240429_0071.tif
	IMG_20240429_0072.tif
	IMG_20240429_0073.tif
	IMG_20240429_0074.tif
	IMG_20240429_0075.tif
	IMG_20240429_0076.tif
	IMG_20240429_0077.tif
	IMG_20240429_0078.tif
	IMG_20240429_0079.tif
	IMG_20240429_0080.tif
	IMG_20240429_0081.tif
	IMG_20240429_0082.tif
	IMG_20240430_0083.tif
	IMG_20240430_0084.tif
	IMG_20240430_0085.tif
	IMG_20240430_0086.tif

